Proof of Theorem bnj605
Step | Hyp | Ref
| Expression |
1 | | bnj605.37 |
. . . . 5
⊢ ((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷) → ∃𝑚∃𝑝𝜂) |
2 | 1 | anim1i 614 |
. . . 4
⊢ (((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷) ∧ 𝜃) → (∃𝑚∃𝑝𝜂 ∧ 𝜃)) |
3 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑝𝜃 |
4 | 3 | 19.41 2231 |
. . . . . 6
⊢
(∃𝑝(𝜂 ∧ 𝜃) ↔ (∃𝑝𝜂 ∧ 𝜃)) |
5 | 4 | exbii 1851 |
. . . . 5
⊢
(∃𝑚∃𝑝(𝜂 ∧ 𝜃) ↔ ∃𝑚(∃𝑝𝜂 ∧ 𝜃)) |
6 | | bnj605.5 |
. . . . . . . 8
⊢ (𝜃 ↔ ∀𝑚 ∈ 𝐷 (𝑚 E 𝑛 → [𝑚 / 𝑛]𝜒)) |
7 | 6 | bnj1095 32661 |
. . . . . . 7
⊢ (𝜃 → ∀𝑚𝜃) |
8 | 7 | nf5i 2144 |
. . . . . 6
⊢
Ⅎ𝑚𝜃 |
9 | 8 | 19.41 2231 |
. . . . 5
⊢
(∃𝑚(∃𝑝𝜂 ∧ 𝜃) ↔ (∃𝑚∃𝑝𝜂 ∧ 𝜃)) |
10 | 5, 9 | bitr2i 275 |
. . . 4
⊢
((∃𝑚∃𝑝𝜂 ∧ 𝜃) ↔ ∃𝑚∃𝑝(𝜂 ∧ 𝜃)) |
11 | 2, 10 | sylib 217 |
. . 3
⊢ (((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷) ∧ 𝜃) → ∃𝑚∃𝑝(𝜂 ∧ 𝜃)) |
12 | | bnj605.19 |
. . . . . . . . . 10
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
13 | 12 | bnj1232 32683 |
. . . . . . . . 9
⊢ (𝜂 → 𝑚 ∈ 𝐷) |
14 | | bnj219 32612 |
. . . . . . . . . 10
⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) |
15 | 12, 14 | bnj770 32643 |
. . . . . . . . 9
⊢ (𝜂 → 𝑚 E 𝑛) |
16 | 13, 15 | jca 511 |
. . . . . . . 8
⊢ (𝜂 → (𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛)) |
17 | 16 | anim1i 614 |
. . . . . . 7
⊢ ((𝜂 ∧ 𝜃) → ((𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛) ∧ 𝜃)) |
18 | | bnj170 32577 |
. . . . . . 7
⊢ ((𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛) ↔ ((𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛) ∧ 𝜃)) |
19 | 17, 18 | sylibr 233 |
. . . . . 6
⊢ ((𝜂 ∧ 𝜃) → (𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛)) |
20 | | bnj605.38 |
. . . . . 6
⊢ ((𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛) → 𝜒′) |
21 | 19, 20 | syl 17 |
. . . . 5
⊢ ((𝜂 ∧ 𝜃) → 𝜒′) |
22 | | simpl 482 |
. . . . 5
⊢ ((𝜂 ∧ 𝜃) → 𝜂) |
23 | 21, 22 | jca 511 |
. . . 4
⊢ ((𝜂 ∧ 𝜃) → (𝜒′ ∧ 𝜂)) |
24 | 23 | 2eximi 1839 |
. . 3
⊢
(∃𝑚∃𝑝(𝜂 ∧ 𝜃) → ∃𝑚∃𝑝(𝜒′ ∧ 𝜂)) |
25 | | bnj248 32579 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) ∧ 𝜂)) |
26 | | bnj605.31 |
. . . . . . . . . . 11
⊢ (𝜒′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
27 | | pm3.35 799 |
. . . . . . . . . . 11
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
28 | 26, 27 | sylan2b 593 |
. . . . . . . . . 10
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
29 | | euex 2577 |
. . . . . . . . . 10
⊢
(∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
31 | | bnj605.17 |
. . . . . . . . 9
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
32 | 30, 31 | bnj1198 32675 |
. . . . . . . 8
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃𝑓𝜏) |
33 | 25, 32 | bnj832 32638 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓𝜏) |
34 | | bnj605.41 |
. . . . . . . . . . . . 13
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝑓 Fn 𝑛) |
35 | | bnj605.42 |
. . . . . . . . . . . . 13
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜑″) |
36 | | bnj605.43 |
. . . . . . . . . . . . 13
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜓″) |
37 | 34, 35, 36 | 3jca 1126 |
. . . . . . . . . . . 12
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → (𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) |
38 | 37 | 3com23 1124 |
. . . . . . . . . . 11
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜂 ∧ 𝜏) → (𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) |
39 | 38 | 3expia 1119 |
. . . . . . . . . 10
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜂) → (𝜏 → (𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″))) |
40 | 39 | eximdv 1921 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜂) → (∃𝑓𝜏 → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″))) |
41 | 40 | ad4ant14 748 |
. . . . . . . 8
⊢ ((((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) ∧ 𝜂) → (∃𝑓𝜏 → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″))) |
42 | 25, 41 | sylbi 216 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → (∃𝑓𝜏 → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″))) |
43 | 33, 42 | mpd 15 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) |
44 | | bnj432 32595 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) ↔ ((𝜒′ ∧ 𝜂) ∧ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴))) |
45 | | biid 260 |
. . . . . . . 8
⊢ (𝑓 Fn 𝑛 ↔ 𝑓 Fn 𝑛) |
46 | | bnj605.13 |
. . . . . . . . 9
⊢ (𝜑″ ↔ [𝑓 / 𝑓]𝜑) |
47 | | sbcid 3728 |
. . . . . . . . 9
⊢
([𝑓 / 𝑓]𝜑 ↔ 𝜑) |
48 | 46, 47 | bitri 274 |
. . . . . . . 8
⊢ (𝜑″ ↔ 𝜑) |
49 | | bnj605.14 |
. . . . . . . . 9
⊢ (𝜓″ ↔ [𝑓 / 𝑓]𝜓) |
50 | | sbcid 3728 |
. . . . . . . . 9
⊢
([𝑓 / 𝑓]𝜓 ↔ 𝜓) |
51 | 49, 50 | bitri 274 |
. . . . . . . 8
⊢ (𝜓″ ↔ 𝜓) |
52 | 45, 48, 51 | 3anbi123i 1153 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″) ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
53 | 52 | exbii 1851 |
. . . . . 6
⊢
(∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″) ↔ ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
54 | 43, 44, 53 | 3imtr3i 290 |
. . . . 5
⊢ (((𝜒′ ∧ 𝜂) ∧ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴)) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
55 | 54 | ex 412 |
. . . 4
⊢ ((𝜒′ ∧ 𝜂) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
56 | 55 | exlimivv 1936 |
. . 3
⊢
(∃𝑚∃𝑝(𝜒′ ∧ 𝜂) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
57 | 11, 24, 56 | 3syl 18 |
. 2
⊢ (((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷) ∧ 𝜃) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
58 | 57 | 3impa 1108 |
1
⊢ ((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ∧ 𝜃) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |