Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj256 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj256 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj248 32688 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃)) | |
2 | anass 469 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
3 | 1, 2 | bitri 274 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w-bnj17 32674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-bnj17 32675 |
This theorem is referenced by: bnj257 32695 bnj432 32704 bnj543 32882 bnj546 32885 bnj557 32890 bnj916 32922 bnj969 32935 bnj1090 32968 bnj1118 32973 bnj1174 32992 |
Copyright terms: Public domain | W3C validator |