Proof of Theorem bnj908
| Step | Hyp | Ref
| Expression |
| 1 | | bnj248 34736 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) ∧ 𝜂)) |
| 2 | | bnj908.4 |
. . . . . . . . . . 11
⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
| 3 | | bnj908.10 |
. . . . . . . . . . 11
⊢ (𝜑′ ↔ [𝑚 / 𝑛]𝜑) |
| 4 | | bnj908.11 |
. . . . . . . . . . 11
⊢ (𝜓′ ↔ [𝑚 / 𝑛]𝜓) |
| 5 | | bnj908.12 |
. . . . . . . . . . 11
⊢ (𝜒′ ↔ [𝑚 / 𝑛]𝜒) |
| 6 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑚 ∈ V |
| 7 | 2, 3, 4, 5, 6 | bnj207 34917 |
. . . . . . . . . 10
⊢ (𝜒′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
| 8 | 7 | biimpi 216 |
. . . . . . . . 9
⊢ (𝜒′ → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
| 9 | | euex 2577 |
. . . . . . . . 9
⊢
(∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
| 10 | 8, 9 | syl6 35 |
. . . . . . . 8
⊢ (𝜒′ → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
| 11 | 10 | impcom 407 |
. . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
| 12 | | bnj908.17 |
. . . . . . 7
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
| 13 | 11, 12 | bnj1198 34831 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃𝑓𝜏) |
| 14 | 1, 13 | bnj832 34794 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓𝜏) |
| 15 | | bnj645 34786 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → 𝜂) |
| 16 | | 19.41v 1949 |
. . . . 5
⊢
(∃𝑓(𝜏 ∧ 𝜂) ↔ (∃𝑓𝜏 ∧ 𝜂)) |
| 17 | 14, 15, 16 | sylanbrc 583 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓(𝜏 ∧ 𝜂)) |
| 18 | | bnj642 34784 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → 𝑅 FrSe 𝐴) |
| 19 | | 19.41v 1949 |
. . . 4
⊢
(∃𝑓((𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴) ↔ (∃𝑓(𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴)) |
| 20 | 17, 18, 19 | sylanbrc 583 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓((𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴)) |
| 21 | | bnj170 34734 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ↔ ((𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴)) |
| 22 | 20, 21 | bnj1198 34831 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓(𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂)) |
| 23 | | bnj908.18 |
. . . 4
⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
| 24 | | bnj908.19 |
. . . 4
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
| 25 | | bnj908.1 |
. . . . . 6
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 26 | 25, 3, 6 | bnj523 34923 |
. . . . 5
⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 27 | | bnj908.2 |
. . . . . 6
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 28 | 27, 4, 6 | bnj539 34927 |
. . . . 5
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 29 | | bnj908.3 |
. . . . 5
⊢ 𝐷 = (ω ∖
{∅}) |
| 30 | | bnj908.16 |
. . . . 5
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
| 31 | 26, 28, 29, 30, 12, 23 | bnj544 34930 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
| 32 | 23, 24, 31 | bnj561 34939 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝐺 Fn 𝑛) |
| 33 | | bnj908.13 |
. . . . . 6
⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) |
| 34 | 30 | bnj528 34925 |
. . . . . 6
⊢ 𝐺 ∈ V |
| 35 | 25, 33, 34 | bnj609 34953 |
. . . . 5
⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 36 | 26, 29, 30, 12, 23, 31, 35 | bnj545 34931 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝜑″) |
| 37 | 23, 24, 36 | bnj562 34940 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜑″) |
| 38 | | bnj908.20 |
. . . 4
⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) |
| 39 | | bnj908.22 |
. . . 4
⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| 40 | | bnj908.23 |
. . . 4
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) |
| 41 | | bnj908.24 |
. . . 4
⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| 42 | | bnj908.25 |
. . . 4
⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
| 43 | | bnj908.26 |
. . . 4
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
| 44 | | bnj908.21 |
. . . 4
⊢ (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) |
| 45 | | bnj908.14 |
. . . . 5
⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓) |
| 46 | 27, 45, 34 | bnj611 34954 |
. . . 4
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 47 | 29, 30, 12, 23, 24, 38, 39, 40, 41, 42, 43, 26, 28, 31, 44, 32, 46 | bnj571 34942 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜓″) |
| 48 | 32, 37, 47 | 3jca 1128 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → (𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) |
| 49 | 22, 48 | bnj593 34781 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓(𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) |