Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj908 Structured version   Visualization version   GIF version

Theorem bnj908 34907
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj908.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj908.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj908.3 𝐷 = (ω ∖ {∅})
bnj908.4 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj908.5 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
bnj908.10 (𝜑′[𝑚 / 𝑛]𝜑)
bnj908.11 (𝜓′[𝑚 / 𝑛]𝜓)
bnj908.12 (𝜒′[𝑚 / 𝑛]𝜒)
bnj908.13 (𝜑″[𝐺 / 𝑓]𝜑)
bnj908.14 (𝜓″[𝐺 / 𝑓]𝜓)
bnj908.15 (𝜒″[𝐺 / 𝑓]𝜒)
bnj908.16 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj908.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj908.18 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj908.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj908.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj908.21 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
bnj908.22 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj908.23 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
bnj908.24 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj908.25 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj908.26 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
Assertion
Ref Expression
bnj908 ((𝑅 FrSe 𝐴𝑥𝐴𝜒′𝜂) → ∃𝑓(𝐺 Fn 𝑛𝜑″𝜓″))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑝   𝑦,𝐴,𝑓,𝑖,𝑛,𝑝   𝐷,𝑝   𝑖,𝐺,𝑦   𝑅,𝑓,𝑖,𝑚,𝑛,𝑝   𝑦,𝑅   𝜂,𝑓,𝑖   𝑥,𝑓,𝑚,𝑛,𝑝   𝑖,𝜑′,𝑝   𝜑,𝑚,𝑝   𝜓,𝑚,𝑝   𝜃,𝑝
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜒(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜃(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑥,𝑦,𝑚,𝑛,𝑝)   𝜁(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜌(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥)   𝐵(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝑅(𝑥)   𝐺(𝑥,𝑓,𝑚,𝑛,𝑝)   𝐾(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj908
StepHypRef Expression
1 bnj248 34676 . . . . . 6 ((𝑅 FrSe 𝐴𝑥𝐴𝜒′𝜂) ↔ (((𝑅 FrSe 𝐴𝑥𝐴) ∧ 𝜒′) ∧ 𝜂))
2 bnj908.4 . . . . . . . . . . 11 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3 bnj908.10 . . . . . . . . . . 11 (𝜑′[𝑚 / 𝑛]𝜑)
4 bnj908.11 . . . . . . . . . . 11 (𝜓′[𝑚 / 𝑛]𝜓)
5 bnj908.12 . . . . . . . . . . 11 (𝜒′[𝑚 / 𝑛]𝜒)
6 vex 3492 . . . . . . . . . . 11 𝑚 ∈ V
72, 3, 4, 5, 6bnj207 34857 . . . . . . . . . 10 (𝜒′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑚𝜑′𝜓′)))
87biimpi 216 . . . . . . . . 9 (𝜒′ → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑚𝜑′𝜓′)))
9 euex 2580 . . . . . . . . 9 (∃!𝑓(𝑓 Fn 𝑚𝜑′𝜓′) → ∃𝑓(𝑓 Fn 𝑚𝜑′𝜓′))
108, 9syl6 35 . . . . . . . 8 (𝜒′ → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 𝑚𝜑′𝜓′)))
1110impcom 407 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ 𝜒′) → ∃𝑓(𝑓 Fn 𝑚𝜑′𝜓′))
12 bnj908.17 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
1311, 12bnj1198 34771 . . . . . 6 (((𝑅 FrSe 𝐴𝑥𝐴) ∧ 𝜒′) → ∃𝑓𝜏)
141, 13bnj832 34734 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴𝜒′𝜂) → ∃𝑓𝜏)
15 bnj645 34726 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴𝜒′𝜂) → 𝜂)
16 19.41v 1949 . . . . 5 (∃𝑓(𝜏𝜂) ↔ (∃𝑓𝜏𝜂))
1714, 15, 16sylanbrc 582 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴𝜒′𝜂) → ∃𝑓(𝜏𝜂))
18 bnj642 34724 . . . 4 ((𝑅 FrSe 𝐴𝑥𝐴𝜒′𝜂) → 𝑅 FrSe 𝐴)
19 19.41v 1949 . . . 4 (∃𝑓((𝜏𝜂) ∧ 𝑅 FrSe 𝐴) ↔ (∃𝑓(𝜏𝜂) ∧ 𝑅 FrSe 𝐴))
2017, 18, 19sylanbrc 582 . . 3 ((𝑅 FrSe 𝐴𝑥𝐴𝜒′𝜂) → ∃𝑓((𝜏𝜂) ∧ 𝑅 FrSe 𝐴))
21 bnj170 34674 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂) ↔ ((𝜏𝜂) ∧ 𝑅 FrSe 𝐴))
2220, 21bnj1198 34771 . 2 ((𝑅 FrSe 𝐴𝑥𝐴𝜒′𝜂) → ∃𝑓(𝑅 FrSe 𝐴𝜏𝜂))
23 bnj908.18 . . . 4 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
24 bnj908.19 . . . 4 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
25 bnj908.1 . . . . . 6 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2625, 3, 6bnj523 34863 . . . . 5 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
27 bnj908.2 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2827, 4, 6bnj539 34867 . . . . 5 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
29 bnj908.3 . . . . 5 𝐷 = (ω ∖ {∅})
30 bnj908.16 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
3126, 28, 29, 30, 12, 23bnj544 34870 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
3223, 24, 31bnj561 34879 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
33 bnj908.13 . . . . . 6 (𝜑″[𝐺 / 𝑓]𝜑)
3430bnj528 34865 . . . . . 6 𝐺 ∈ V
3525, 33, 34bnj609 34893 . . . . 5 (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
3626, 29, 30, 12, 23, 31, 35bnj545 34871 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)
3723, 24, 36bnj562 34880 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜑″)
38 bnj908.20 . . . 4 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
39 bnj908.22 . . . 4 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
40 bnj908.23 . . . 4 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
41 bnj908.24 . . . 4 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
42 bnj908.25 . . . 4 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
43 bnj908.26 . . . 4 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
44 bnj908.21 . . . 4 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
45 bnj908.14 . . . . 5 (𝜓″[𝐺 / 𝑓]𝜓)
4627, 45, 34bnj611 34894 . . . 4 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
4729, 30, 12, 23, 24, 38, 39, 40, 41, 42, 43, 26, 28, 31, 44, 32, 46bnj571 34882 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜓″)
4832, 37, 473jca 1128 . 2 ((𝑅 FrSe 𝐴𝜏𝜂) → (𝐺 Fn 𝑛𝜑″𝜓″))
4922, 48bnj593 34721 1 ((𝑅 FrSe 𝐴𝑥𝐴𝜒′𝜂) → ∃𝑓(𝐺 Fn 𝑛𝜑″𝜓″))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  wne 2946  wral 3067  [wsbc 3804  cdif 3973  cun 3974  c0 4352  {csn 4648  cop 4654   ciun 5015   class class class wbr 5166   E cep 5598  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903  w-bnj17 34662   predc-bnj14 34664   FrSe w-bnj15 34668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-om 7904  df-bnj17 34663  df-bnj14 34665  df-bnj13 34667  df-bnj15 34669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator