Proof of Theorem bnj908
Step | Hyp | Ref
| Expression |
1 | | bnj248 32191 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) ∧ 𝜂)) |
2 | | bnj908.4 |
. . . . . . . . . . 11
⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
3 | | bnj908.10 |
. . . . . . . . . . 11
⊢ (𝜑′ ↔ [𝑚 / 𝑛]𝜑) |
4 | | bnj908.11 |
. . . . . . . . . . 11
⊢ (𝜓′ ↔ [𝑚 / 𝑛]𝜓) |
5 | | bnj908.12 |
. . . . . . . . . . 11
⊢ (𝜒′ ↔ [𝑚 / 𝑛]𝜒) |
6 | | vex 3414 |
. . . . . . . . . . 11
⊢ 𝑚 ∈ V |
7 | 2, 3, 4, 5, 6 | bnj207 32374 |
. . . . . . . . . 10
⊢ (𝜒′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
8 | 7 | biimpi 219 |
. . . . . . . . 9
⊢ (𝜒′ → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
9 | | euex 2597 |
. . . . . . . . 9
⊢
(∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
10 | 8, 9 | syl6 35 |
. . . . . . . 8
⊢ (𝜒′ → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
11 | 10 | impcom 412 |
. . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
12 | | bnj908.17 |
. . . . . . 7
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
13 | 11, 12 | bnj1198 32288 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃𝑓𝜏) |
14 | 1, 13 | bnj832 32250 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓𝜏) |
15 | | bnj645 32242 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → 𝜂) |
16 | | 19.41v 1951 |
. . . . 5
⊢
(∃𝑓(𝜏 ∧ 𝜂) ↔ (∃𝑓𝜏 ∧ 𝜂)) |
17 | 14, 15, 16 | sylanbrc 587 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓(𝜏 ∧ 𝜂)) |
18 | | bnj642 32240 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → 𝑅 FrSe 𝐴) |
19 | | 19.41v 1951 |
. . . 4
⊢
(∃𝑓((𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴) ↔ (∃𝑓(𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴)) |
20 | 17, 18, 19 | sylanbrc 587 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓((𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴)) |
21 | | bnj170 32189 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ↔ ((𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴)) |
22 | 20, 21 | bnj1198 32288 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓(𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂)) |
23 | | bnj908.18 |
. . . 4
⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
24 | | bnj908.19 |
. . . 4
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
25 | | bnj908.1 |
. . . . . 6
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
26 | 25, 3, 6 | bnj523 32380 |
. . . . 5
⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
27 | | bnj908.2 |
. . . . . 6
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
28 | 27, 4, 6 | bnj539 32384 |
. . . . 5
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
29 | | bnj908.3 |
. . . . 5
⊢ 𝐷 = (ω ∖
{∅}) |
30 | | bnj908.16 |
. . . . 5
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
31 | 26, 28, 29, 30, 12, 23 | bnj544 32387 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |
32 | 23, 24, 31 | bnj561 32396 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝐺 Fn 𝑛) |
33 | | bnj908.13 |
. . . . . 6
⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) |
34 | 30 | bnj528 32382 |
. . . . . 6
⊢ 𝐺 ∈ V |
35 | 25, 33, 34 | bnj609 32410 |
. . . . 5
⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅)) |
36 | 26, 29, 30, 12, 23, 31, 35 | bnj545 32388 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝜑″) |
37 | 23, 24, 36 | bnj562 32397 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜑″) |
38 | | bnj908.20 |
. . . 4
⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) |
39 | | bnj908.22 |
. . . 4
⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
40 | | bnj908.23 |
. . . 4
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) |
41 | | bnj908.24 |
. . . 4
⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
42 | | bnj908.25 |
. . . 4
⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
43 | | bnj908.26 |
. . . 4
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
44 | | bnj908.21 |
. . . 4
⊢ (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) |
45 | | bnj908.14 |
. . . . 5
⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓) |
46 | 27, 45, 34 | bnj611 32411 |
. . . 4
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
47 | 29, 30, 12, 23, 24, 38, 39, 40, 41, 42, 43, 26, 28, 31, 44, 32, 46 | bnj571 32399 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜓″) |
48 | 32, 37, 47 | 3jca 1126 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → (𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) |
49 | 22, 48 | bnj593 32237 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓(𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) |