Proof of Theorem bnj908
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bnj248 34714 | . . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) ∧ 𝜂)) | 
| 2 |  | bnj908.4 | . . . . . . . . . . 11
⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | 
| 3 |  | bnj908.10 | . . . . . . . . . . 11
⊢ (𝜑′ ↔ [𝑚 / 𝑛]𝜑) | 
| 4 |  | bnj908.11 | . . . . . . . . . . 11
⊢ (𝜓′ ↔ [𝑚 / 𝑛]𝜓) | 
| 5 |  | bnj908.12 | . . . . . . . . . . 11
⊢ (𝜒′ ↔ [𝑚 / 𝑛]𝜒) | 
| 6 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑚 ∈ V | 
| 7 | 2, 3, 4, 5, 6 | bnj207 34895 | . . . . . . . . . 10
⊢ (𝜒′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) | 
| 8 | 7 | biimpi 216 | . . . . . . . . 9
⊢ (𝜒′ → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) | 
| 9 |  | euex 2577 | . . . . . . . . 9
⊢
(∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | 
| 10 | 8, 9 | syl6 35 | . . . . . . . 8
⊢ (𝜒′ → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) | 
| 11 | 10 | impcom 407 | . . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | 
| 12 |  | bnj908.17 | . . . . . . 7
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | 
| 13 | 11, 12 | bnj1198 34809 | . . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃𝑓𝜏) | 
| 14 | 1, 13 | bnj832 34772 | . . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓𝜏) | 
| 15 |  | bnj645 34764 | . . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → 𝜂) | 
| 16 |  | 19.41v 1949 | . . . . 5
⊢
(∃𝑓(𝜏 ∧ 𝜂) ↔ (∃𝑓𝜏 ∧ 𝜂)) | 
| 17 | 14, 15, 16 | sylanbrc 583 | . . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓(𝜏 ∧ 𝜂)) | 
| 18 |  | bnj642 34762 | . . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → 𝑅 FrSe 𝐴) | 
| 19 |  | 19.41v 1949 | . . . 4
⊢
(∃𝑓((𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴) ↔ (∃𝑓(𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴)) | 
| 20 | 17, 18, 19 | sylanbrc 583 | . . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓((𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴)) | 
| 21 |  | bnj170 34712 | . . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) ↔ ((𝜏 ∧ 𝜂) ∧ 𝑅 FrSe 𝐴)) | 
| 22 | 20, 21 | bnj1198 34809 | . 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓(𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂)) | 
| 23 |  | bnj908.18 | . . . 4
⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | 
| 24 |  | bnj908.19 | . . . 4
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | 
| 25 |  | bnj908.1 | . . . . . 6
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | 
| 26 | 25, 3, 6 | bnj523 34901 | . . . . 5
⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | 
| 27 |  | bnj908.2 | . . . . . 6
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | 
| 28 | 27, 4, 6 | bnj539 34905 | . . . . 5
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | 
| 29 |  | bnj908.3 | . . . . 5
⊢ 𝐷 = (ω ∖
{∅}) | 
| 30 |  | bnj908.16 | . . . . 5
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) | 
| 31 | 26, 28, 29, 30, 12, 23 | bnj544 34908 | . . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) | 
| 32 | 23, 24, 31 | bnj561 34917 | . . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝐺 Fn 𝑛) | 
| 33 |  | bnj908.13 | . . . . . 6
⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑) | 
| 34 | 30 | bnj528 34903 | . . . . . 6
⊢ 𝐺 ∈ V | 
| 35 | 25, 33, 34 | bnj609 34931 | . . . . 5
⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅)) | 
| 36 | 26, 29, 30, 12, 23, 31, 35 | bnj545 34909 | . . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝜑″) | 
| 37 | 23, 24, 36 | bnj562 34918 | . . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜑″) | 
| 38 |  | bnj908.20 | . . . 4
⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) | 
| 39 |  | bnj908.22 | . . . 4
⊢ 𝐵 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) | 
| 40 |  | bnj908.23 | . . . 4
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) | 
| 41 |  | bnj908.24 | . . . 4
⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | 
| 42 |  | bnj908.25 | . . . 4
⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) | 
| 43 |  | bnj908.26 | . . . 4
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) | 
| 44 |  | bnj908.21 | . . . 4
⊢ (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) | 
| 45 |  | bnj908.14 | . . . . 5
⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓) | 
| 46 | 27, 45, 34 | bnj611 34932 | . . . 4
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) | 
| 47 | 29, 30, 12, 23, 24, 38, 39, 40, 41, 42, 43, 26, 28, 31, 44, 32, 46 | bnj571 34920 | . . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜓″) | 
| 48 | 32, 37, 47 | 3jca 1129 | . 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → (𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) | 
| 49 | 22, 48 | bnj593 34759 | 1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂) → ∃𝑓(𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) |