| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj240 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj240.1 | ⊢ (𝜓 → 𝜓′) |
| bnj240.2 | ⊢ (𝜒 → 𝜒′) |
| Ref | Expression |
|---|---|
| bnj240 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓′ ∧ 𝜒′)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj240.1 | . . . 4 ⊢ (𝜓 → 𝜓′) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜓′) |
| 3 | bnj240.2 | . . . 4 ⊢ (𝜒 → 𝜒′) | |
| 4 | 3 | 3ad2ant2 1134 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜒′) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → (𝜓′ ∧ 𝜒′)) |
| 6 | 5 | 3comr 1125 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜓′ ∧ 𝜒′)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: bnj594 34885 bnj580 34886 bnj966 34917 bnj967 34918 |
| Copyright terms: Public domain | W3C validator |