Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj252 Structured version   Visualization version   GIF version

Theorem bnj252 34700
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj252 ((𝜑𝜓𝜒𝜃) ↔ (𝜑 ∧ (𝜓𝜒𝜃)))

Proof of Theorem bnj252
StepHypRef Expression
1 bnj250 34698 . 2 ((𝜑𝜓𝜒𝜃) ↔ (𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)))
2 df-3an 1088 . . 3 ((𝜓𝜒𝜃) ↔ ((𝜓𝜒) ∧ 𝜃))
32anbi2i 623 . 2 ((𝜑 ∧ (𝜓𝜒𝜃)) ↔ (𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)))
41, 3bitr4i 278 1 ((𝜑𝜓𝜒𝜃) ↔ (𝜑 ∧ (𝜓𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  w-bnj17 34683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-bnj17 34684
This theorem is referenced by:  bnj290  34707  bnj563  34740  bnj919  34764  bnj976  34774  bnj543  34890  bnj570  34902  bnj594  34909  bnj916  34930  bnj917  34931  bnj964  34940  bnj983  34948  bnj984  34949  bnj998  34954  bnj999  34955  bnj1021  34963  bnj1083  34975  bnj1450  35047
  Copyright terms: Public domain W3C validator