![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj252 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj252 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj250 31280 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃))) | |
2 | df-3an 1110 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
3 | 2 | anbi2i 617 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃))) |
4 | 1, 3 | bitr4i 270 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 ∧ w3a 1108 ∧ w-bnj17 31265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 df-bnj17 31266 |
This theorem is referenced by: bnj290 31289 bnj563 31323 bnj919 31347 bnj976 31358 bnj543 31473 bnj570 31485 bnj594 31492 bnj916 31513 bnj917 31514 bnj964 31523 bnj983 31531 bnj984 31532 bnj998 31536 bnj999 31537 bnj1021 31544 bnj1083 31556 bnj1450 31628 |
Copyright terms: Public domain | W3C validator |