| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj252 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj252 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj250 34685 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃))) | |
| 2 | df-3an 1088 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 3 | 2 | anbi2i 623 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃))) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∧ w-bnj17 34670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-bnj17 34671 |
| This theorem is referenced by: bnj290 34694 bnj563 34727 bnj919 34751 bnj976 34761 bnj543 34877 bnj570 34889 bnj594 34896 bnj916 34917 bnj917 34918 bnj964 34927 bnj983 34935 bnj984 34936 bnj998 34941 bnj999 34942 bnj1021 34950 bnj1083 34962 bnj1450 35034 |
| Copyright terms: Public domain | W3C validator |