Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj252 Structured version   Visualization version   GIF version

Theorem bnj252 32661
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj252 ((𝜑𝜓𝜒𝜃) ↔ (𝜑 ∧ (𝜓𝜒𝜃)))

Proof of Theorem bnj252
StepHypRef Expression
1 bnj250 32659 . 2 ((𝜑𝜓𝜒𝜃) ↔ (𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)))
2 df-3an 1087 . . 3 ((𝜓𝜒𝜃) ↔ ((𝜓𝜒) ∧ 𝜃))
32anbi2i 622 . 2 ((𝜑 ∧ (𝜓𝜒𝜃)) ↔ (𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)))
41, 3bitr4i 277 1 ((𝜑𝜓𝜒𝜃) ↔ (𝜑 ∧ (𝜓𝜒𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085  w-bnj17 32644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-bnj17 32645
This theorem is referenced by:  bnj290  32668  bnj563  32702  bnj919  32726  bnj976  32736  bnj543  32852  bnj570  32864  bnj594  32871  bnj916  32892  bnj917  32893  bnj964  32902  bnj983  32910  bnj984  32911  bnj998  32916  bnj999  32917  bnj1021  32925  bnj1083  32937  bnj1450  33009
  Copyright terms: Public domain W3C validator