Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj251 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj251 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj250 32252 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃))) | |
2 | anass 472 | . . 3 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) ↔ (𝜓 ∧ (𝜒 ∧ 𝜃))) | |
3 | 2 | anbi2i 626 | . 2 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) |
4 | 1, 3 | bitri 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w-bnj17 32237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 df-bnj17 32238 |
This theorem is referenced by: bnj255 32256 bnj535 32443 bnj570 32458 bnj953 32492 bnj1110 32535 |
Copyright terms: Public domain | W3C validator |