![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj257 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj257 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜓 ∧ 𝜃 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 462 | . . 3 ⊢ ((𝜒 ∧ 𝜃) ↔ (𝜃 ∧ 𝜒)) | |
2 | 1 | anbi2i 624 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜃 ∧ 𝜒))) |
3 | bnj256 33717 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | |
4 | bnj256 33717 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜃 ∧ 𝜒))) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜓 ∧ 𝜃 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w-bnj17 33697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-bnj17 33698 |
This theorem is referenced by: bnj258 33719 bnj334 33724 bnj543 33904 bnj929 33947 |
Copyright terms: Public domain | W3C validator |