Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj643 Structured version   Visualization version   GIF version

Theorem bnj643 32028
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj643 ((𝜑𝜓𝜒𝜃) → 𝜓)

Proof of Theorem bnj643
StepHypRef Expression
1 bnj291 31989 . 2 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜒𝜃) ∧ 𝜓))
21simprbi 499 1 ((𝜑𝜓𝜒𝜃) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083  w-bnj17 31964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 209  df-an 399  df-3an 1085  df-bnj17 31965
This theorem is referenced by:  bnj706  32033  bnj916  32213  bnj998  32237  bnj1006  32240
  Copyright terms: Public domain W3C validator