Proof of Theorem bnj916
Step | Hyp | Ref
| Expression |
1 | | bnj256 32585 |
. . . . . 6
⊢ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ (𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
2 | 1 | 2exbii 1852 |
. . . . 5
⊢
(∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ ∃𝑛∃𝑖((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ (𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
3 | | 19.41v 1954 |
. . . . . 6
⊢
(∃𝑛((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖))) ↔ (∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
4 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑖 𝑛 ∈ 𝐷 |
5 | | bnj916.1 |
. . . . . . . . . . 11
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
6 | | bnj916.2 |
. . . . . . . . . . 11
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
7 | 5, 6 | bnj911 32812 |
. . . . . . . . . 10
⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → ∀𝑖(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
8 | 7 | nf5i 2144 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) |
9 | 4, 8 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
10 | 9 | 19.42 2232 |
. . . . . . 7
⊢
(∃𝑖((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ (𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖))) ↔ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
11 | 10 | exbii 1851 |
. . . . . 6
⊢
(∃𝑛∃𝑖((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ (𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖))) ↔ ∃𝑛((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
12 | | df-rex 3069 |
. . . . . . 7
⊢
(∃𝑛 ∈
𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
13 | | df-rex 3069 |
. . . . . . 7
⊢
(∃𝑖 ∈ dom
𝑓 𝑦 ∈ (𝑓‘𝑖) ↔ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
14 | 12, 13 | anbi12i 626 |
. . . . . 6
⊢
((∃𝑛 ∈
𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖)) ↔ (∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ ∃𝑖(𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
15 | 3, 11, 14 | 3bitr4i 302 |
. . . . 5
⊢
(∃𝑛∃𝑖((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ (𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖))) ↔ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖))) |
16 | 2, 15 | bitri 274 |
. . . 4
⊢
(∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖))) |
17 | 16 | exbii 1851 |
. . 3
⊢
(∃𝑓∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ ∃𝑓(∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖))) |
18 | | bnj916.5 |
. . . . . . 7
⊢ (𝜒 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
19 | 18 | 3anbi2i 1156 |
. . . . . 6
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓) ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ dom 𝑓)) |
20 | 19 | anbi1i 623 |
. . . . 5
⊢ (((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓) ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ dom 𝑓) ∧ 𝑦 ∈ (𝑓‘𝑖))) |
21 | | df-bnj17 32566 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓) ∧ 𝑦 ∈ (𝑓‘𝑖))) |
22 | | df-bnj17 32566 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ dom 𝑓) ∧ 𝑦 ∈ (𝑓‘𝑖))) |
23 | 20, 21, 22 | 3bitr4i 302 |
. . . 4
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
24 | 23 | 3exbii 1853 |
. . 3
⊢
(∃𝑓∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ ∃𝑓∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
25 | | bnj916.3 |
. . . . . . 7
⊢ 𝐷 = (ω ∖
{∅}) |
26 | | bnj916.4 |
. . . . . . 7
⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
27 | 5, 6, 25, 26 | bnj882 32806 |
. . . . . 6
⊢
trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
28 | 27 | eleq2i 2830 |
. . . . 5
⊢ (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ 𝑦 ∈ ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
29 | | eliun 4925 |
. . . . 5
⊢ (𝑦 ∈ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ↔ ∃𝑓 ∈ 𝐵 𝑦 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
30 | | eliun 4925 |
. . . . . 6
⊢ (𝑦 ∈ ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) ↔ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖)) |
31 | 30 | rexbii 3177 |
. . . . 5
⊢
(∃𝑓 ∈
𝐵 𝑦 ∈ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) ↔ ∃𝑓 ∈ 𝐵 ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖)) |
32 | 28, 29, 31 | 3bitri 296 |
. . . 4
⊢ (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ ∃𝑓 ∈ 𝐵 ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖)) |
33 | | df-rex 3069 |
. . . 4
⊢
(∃𝑓 ∈
𝐵 ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖) ↔ ∃𝑓(𝑓 ∈ 𝐵 ∧ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖))) |
34 | 26 | abeq2i 2874 |
. . . . . 6
⊢ (𝑓 ∈ 𝐵 ↔ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
35 | 34 | anbi1i 623 |
. . . . 5
⊢ ((𝑓 ∈ 𝐵 ∧ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖)) ↔ (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖))) |
36 | 35 | exbii 1851 |
. . . 4
⊢
(∃𝑓(𝑓 ∈ 𝐵 ∧ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖)) ↔ ∃𝑓(∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖))) |
37 | 32, 33, 36 | 3bitri 296 |
. . 3
⊢ (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ ∃𝑓(∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ ∃𝑖 ∈ dom 𝑓 𝑦 ∈ (𝑓‘𝑖))) |
38 | 17, 24, 37 | 3bitr4ri 303 |
. 2
⊢ (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ ∃𝑓∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
39 | | bnj643 32629 |
. . . . . 6
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) → 𝜒) |
40 | 18 | bnj564 32624 |
. . . . . . 7
⊢ (𝜒 → dom 𝑓 = 𝑛) |
41 | 40 | eleq2d 2824 |
. . . . . 6
⊢ (𝜒 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑛)) |
42 | | anbi1 631 |
. . . . . . 7
⊢ ((𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑛) → ((𝑖 ∈ dom 𝑓 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ (𝑓‘𝑖))) ↔ (𝑖 ∈ 𝑛 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ (𝑓‘𝑖))))) |
43 | | bnj334 32592 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (𝑖 ∈ dom 𝑓 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
44 | | bnj252 32582 |
. . . . . . . 8
⊢ ((𝑖 ∈ dom 𝑓 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (𝑖 ∈ dom 𝑓 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
45 | 43, 44 | bitri 274 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (𝑖 ∈ dom 𝑓 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
46 | | bnj334 32592 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
47 | | bnj252 32582 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (𝑖 ∈ 𝑛 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
48 | 46, 47 | bitri 274 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (𝑖 ∈ 𝑛 ∧ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
49 | 42, 45, 48 | 3bitr4g 313 |
. . . . . 6
⊢ ((𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑛) → ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
50 | 39, 41, 49 | 3syl 18 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) → ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖)))) |
51 | 50 | ibi 266 |
. . . 4
⊢ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) → (𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
52 | 51 | 2eximi 1839 |
. . 3
⊢
(∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) → ∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
53 | 52 | eximi 1838 |
. 2
⊢
(∃𝑓∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑦 ∈ (𝑓‘𝑖)) → ∃𝑓∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
54 | 38, 53 | sylbi 216 |
1
⊢ (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |