Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj658 Structured version   Visualization version   GIF version

Theorem bnj658 32710
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj658 ((𝜑𝜓𝜒𝜃) → (𝜑𝜓𝜒))

Proof of Theorem bnj658
StepHypRef Expression
1 df-bnj17 32645 . 2 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
21simplbi 497 1 ((𝜑𝜓𝜒𝜃) → (𝜑𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  w-bnj17 32644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-bnj17 32645
This theorem is referenced by:  bnj721  32716  bnj594  32871  bnj944  32897  bnj966  32903  bnj967  32904  bnj1154  32958
  Copyright terms: Public domain W3C validator