Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj966 Structured version   Visualization version   GIF version

Theorem bnj966 31465
Description: Technical lemma for bnj69 31529. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj966.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj966.10 𝐷 = (ω ∖ {∅})
bnj966.12 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj966.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj966.44 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
bnj966.53 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝)
Assertion
Ref Expression
bnj966 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Distinct variable groups:   𝑦,𝑓   𝑦,𝑖   𝑦,𝑚   𝑦,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj966
StepHypRef Expression
1 bnj966.53 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝)
21bnj930 31291 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → Fun 𝐺)
323adant3 1162 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → Fun 𝐺)
4 opex 5090 . . . . . . 7 𝑛, 𝐶⟩ ∈ V
54snid 4368 . . . . . 6 𝑛, 𝐶⟩ ∈ {⟨𝑛, 𝐶⟩}
6 elun2 3945 . . . . . 6 (⟨𝑛, 𝐶⟩ ∈ {⟨𝑛, 𝐶⟩} → ⟨𝑛, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑛, 𝐶⟩}))
75, 6ax-mp 5 . . . . 5 𝑛, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑛, 𝐶⟩})
8 bnj966.13 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
97, 8eleqtrri 2843 . . . 4 𝑛, 𝐶⟩ ∈ 𝐺
10 funopfv 6425 . . . 4 (Fun 𝐺 → (⟨𝑛, 𝐶⟩ ∈ 𝐺 → (𝐺𝑛) = 𝐶))
113, 9, 10mpisyl 21 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺𝑛) = 𝐶)
12 simp22 1264 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑛 = suc 𝑚)
13 simp33 1268 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑛 = suc 𝑖)
14 bnj551 31263 . . . . 5 ((𝑛 = suc 𝑚𝑛 = suc 𝑖) → 𝑚 = 𝑖)
1512, 13, 14syl2anc 579 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑚 = 𝑖)
16 suceq 5975 . . . . . . . 8 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
1716eqeq2d 2775 . . . . . . 7 (𝑚 = 𝑖 → (𝑛 = suc 𝑚𝑛 = suc 𝑖))
1817biimpac 470 . . . . . 6 ((𝑛 = suc 𝑚𝑚 = 𝑖) → 𝑛 = suc 𝑖)
1918fveq2d 6381 . . . . 5 ((𝑛 = suc 𝑚𝑚 = 𝑖) → (𝐺𝑛) = (𝐺‘suc 𝑖))
20 bnj966.12 . . . . . . 7 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
21 fveq2 6377 . . . . . . . 8 (𝑚 = 𝑖 → (𝑓𝑚) = (𝑓𝑖))
2221bnj1113 31307 . . . . . . 7 (𝑚 = 𝑖 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2320, 22syl5eq 2811 . . . . . 6 (𝑚 = 𝑖𝐶 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2423adantl 473 . . . . 5 ((𝑛 = suc 𝑚𝑚 = 𝑖) → 𝐶 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2519, 24eqeq12d 2780 . . . 4 ((𝑛 = suc 𝑚𝑚 = 𝑖) → ((𝐺𝑛) = 𝐶 ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2612, 15, 25syl2anc 579 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → ((𝐺𝑛) = 𝐶 ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2711, 26mpbid 223 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
28 bnj966.44 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
29283adant3 1162 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝐶 ∈ V)
30 bnj966.3 . . . . . . . 8 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
3130bnj1235 31326 . . . . . . 7 (𝜒𝑓 Fn 𝑛)
32313ad2ant1 1163 . . . . . 6 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑓 Fn 𝑛)
33323ad2ant2 1164 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑓 Fn 𝑛)
34 simp23 1265 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑝 = suc 𝑛)
3529, 33, 34, 13bnj951 31297 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖))
36 bnj966.10 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
3736bnj923 31289 . . . . . . . 8 (𝑛𝐷𝑛 ∈ ω)
3830, 37bnj769 31283 . . . . . . 7 (𝜒𝑛 ∈ ω)
39383ad2ant1 1163 . . . . . 6 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑛 ∈ ω)
40 simp3 1168 . . . . . 6 ((𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖) → 𝑛 = suc 𝑖)
4139, 40bnj240 31219 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝑛 ∈ ω ∧ 𝑛 = suc 𝑖))
42 vex 3353 . . . . . . 7 𝑖 ∈ V
4342bnj216 31252 . . . . . 6 (𝑛 = suc 𝑖𝑖𝑛)
4443adantl 473 . . . . 5 ((𝑛 ∈ ω ∧ 𝑛 = suc 𝑖) → 𝑖𝑛)
4541, 44syl 17 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑖𝑛)
46 bnj658 31272 . . . . . . 7 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛))
4746anim1i 608 . . . . . 6 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) ∧ 𝑖𝑛) → ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝑖𝑛))
48 df-bnj17 31207 . . . . . 6 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝑖𝑛))
4947, 48sylibr 225 . . . . 5 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) ∧ 𝑖𝑛) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛))
508bnj945 31295 . . . . 5 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) → (𝐺𝑖) = (𝑓𝑖))
5149, 50syl 17 . . . 4 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) ∧ 𝑖𝑛) → (𝐺𝑖) = (𝑓𝑖))
5235, 45, 51syl2anc 579 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺𝑖) = (𝑓𝑖))
5320, 8bnj958 31461 . . . . 5 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
5453bnj956 31298 . . . 4 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
5554eqeq2d 2775 . . 3 ((𝐺𝑖) = (𝑓𝑖) → ((𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5652, 55syl 17 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → ((𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5727, 56mpbird 248 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  Vcvv 3350  cdif 3731  cun 3732  c0 4081  {csn 4336  cop 4342   ciun 4678  suc csuc 5912  Fun wfun 6064   Fn wfn 6065  cfv 6070  ωcom 7265  w-bnj17 31206   predc-bnj14 31208   FrSe w-bnj15 31212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064  ax-un 7149  ax-reg 8706
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-id 5187  df-eprel 5192  df-fr 5238  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-res 5291  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-fv 6078  df-bnj17 31207
This theorem is referenced by:  bnj910  31469
  Copyright terms: Public domain W3C validator