Proof of Theorem bnj966
| Step | Hyp | Ref
| Expression |
| 1 | | bnj966.53 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝) |
| 2 | 1 | fnfund 6669 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → Fun 𝐺) |
| 3 | 2 | 3adant3 1133 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → Fun 𝐺) |
| 4 | | opex 5469 |
. . . . . . 7
⊢
〈𝑛, 𝐶〉 ∈ V |
| 5 | 4 | snid 4662 |
. . . . . 6
⊢
〈𝑛, 𝐶〉 ∈ {〈𝑛, 𝐶〉} |
| 6 | | elun2 4183 |
. . . . . 6
⊢
(〈𝑛, 𝐶〉 ∈ {〈𝑛, 𝐶〉} → 〈𝑛, 𝐶〉 ∈ (𝑓 ∪ {〈𝑛, 𝐶〉})) |
| 7 | 5, 6 | ax-mp 5 |
. . . . 5
⊢
〈𝑛, 𝐶〉 ∈ (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| 8 | | bnj966.13 |
. . . . 5
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
| 9 | 7, 8 | eleqtrri 2840 |
. . . 4
⊢
〈𝑛, 𝐶〉 ∈ 𝐺 |
| 10 | | funopfv 6958 |
. . . 4
⊢ (Fun
𝐺 → (〈𝑛, 𝐶〉 ∈ 𝐺 → (𝐺‘𝑛) = 𝐶)) |
| 11 | 3, 9, 10 | mpisyl 21 |
. . 3
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → (𝐺‘𝑛) = 𝐶) |
| 12 | | simp22 1208 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → 𝑛 = suc 𝑚) |
| 13 | | simp33 1212 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → 𝑛 = suc 𝑖) |
| 14 | | bnj551 34756 |
. . . . 5
⊢ ((𝑛 = suc 𝑚 ∧ 𝑛 = suc 𝑖) → 𝑚 = 𝑖) |
| 15 | 12, 13, 14 | syl2anc 584 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → 𝑚 = 𝑖) |
| 16 | | suceq 6450 |
. . . . . . . 8
⊢ (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖) |
| 17 | 16 | eqeq2d 2748 |
. . . . . . 7
⊢ (𝑚 = 𝑖 → (𝑛 = suc 𝑚 ↔ 𝑛 = suc 𝑖)) |
| 18 | 17 | biimpac 478 |
. . . . . 6
⊢ ((𝑛 = suc 𝑚 ∧ 𝑚 = 𝑖) → 𝑛 = suc 𝑖) |
| 19 | 18 | fveq2d 6910 |
. . . . 5
⊢ ((𝑛 = suc 𝑚 ∧ 𝑚 = 𝑖) → (𝐺‘𝑛) = (𝐺‘suc 𝑖)) |
| 20 | | bnj966.12 |
. . . . . . 7
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
| 21 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑚 = 𝑖 → (𝑓‘𝑚) = (𝑓‘𝑖)) |
| 22 | 21 | bnj1113 34799 |
. . . . . . 7
⊢ (𝑚 = 𝑖 → ∪
𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 23 | 20, 22 | eqtrid 2789 |
. . . . . 6
⊢ (𝑚 = 𝑖 → 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 24 | 23 | adantl 481 |
. . . . 5
⊢ ((𝑛 = suc 𝑚 ∧ 𝑚 = 𝑖) → 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 25 | 19, 24 | eqeq12d 2753 |
. . . 4
⊢ ((𝑛 = suc 𝑚 ∧ 𝑚 = 𝑖) → ((𝐺‘𝑛) = 𝐶 ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 26 | 12, 15, 25 | syl2anc 584 |
. . 3
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → ((𝐺‘𝑛) = 𝐶 ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 27 | 11, 26 | mpbid 232 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 28 | | bnj966.44 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝐶 ∈ V) |
| 29 | 28 | 3adant3 1133 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → 𝐶 ∈ V) |
| 30 | | bnj966.3 |
. . . . . . . 8
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 31 | 30 | bnj1235 34818 |
. . . . . . 7
⊢ (𝜒 → 𝑓 Fn 𝑛) |
| 32 | 31 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝑓 Fn 𝑛) |
| 33 | 32 | 3ad2ant2 1135 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → 𝑓 Fn 𝑛) |
| 34 | | simp23 1209 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → 𝑝 = suc 𝑛) |
| 35 | 29, 33, 34, 13 | bnj951 34789 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑛 = suc 𝑖)) |
| 36 | | bnj966.10 |
. . . . . . . . 9
⊢ 𝐷 = (ω ∖
{∅}) |
| 37 | 36 | bnj923 34782 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| 38 | 30, 37 | bnj769 34776 |
. . . . . . 7
⊢ (𝜒 → 𝑛 ∈ ω) |
| 39 | 38 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝑛 ∈ ω) |
| 40 | | simp3 1139 |
. . . . . 6
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖) → 𝑛 = suc 𝑖) |
| 41 | 39, 40 | bnj240 34713 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → (𝑛 ∈ ω ∧ 𝑛 = suc 𝑖)) |
| 42 | | vex 3484 |
. . . . . . 7
⊢ 𝑖 ∈ V |
| 43 | 42 | bnj216 34746 |
. . . . . 6
⊢ (𝑛 = suc 𝑖 → 𝑖 ∈ 𝑛) |
| 44 | 43 | adantl 481 |
. . . . 5
⊢ ((𝑛 ∈ ω ∧ 𝑛 = suc 𝑖) → 𝑖 ∈ 𝑛) |
| 45 | 41, 44 | syl 17 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → 𝑖 ∈ 𝑛) |
| 46 | | bnj658 34765 |
. . . . . . 7
⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑛 = suc 𝑖) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛)) |
| 47 | 46 | anim1i 615 |
. . . . . 6
⊢ (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑛 = suc 𝑖) ∧ 𝑖 ∈ 𝑛) → ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ 𝑛)) |
| 48 | | df-bnj17 34701 |
. . . . . 6
⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ 𝑛)) |
| 49 | 47, 48 | sylibr 234 |
. . . . 5
⊢ (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑛 = suc 𝑖) ∧ 𝑖 ∈ 𝑛) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛)) |
| 50 | 8 | bnj945 34787 |
. . . . 5
⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛) → (𝐺‘𝑖) = (𝑓‘𝑖)) |
| 51 | 49, 50 | syl 17 |
. . . 4
⊢ (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑛 = suc 𝑖) ∧ 𝑖 ∈ 𝑛) → (𝐺‘𝑖) = (𝑓‘𝑖)) |
| 52 | 35, 45, 51 | syl2anc 584 |
. . 3
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → (𝐺‘𝑖) = (𝑓‘𝑖)) |
| 53 | 20, 8 | bnj958 34954 |
. . . . 5
⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
| 54 | 53 | bnj956 34790 |
. . . 4
⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∪
𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 55 | 54 | eqeq2d 2748 |
. . 3
⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ((𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 56 | 52, 55 | syl 17 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → ((𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 57 | 27, 56 | mpbird 257 |
1
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |