Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj966 Structured version   Visualization version   GIF version

Theorem bnj966 34920
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj966.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj966.10 𝐷 = (ω ∖ {∅})
bnj966.12 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj966.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj966.44 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
bnj966.53 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝)
Assertion
Ref Expression
bnj966 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Distinct variable groups:   𝑦,𝑓   𝑦,𝑖   𝑦,𝑚   𝑦,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj966
StepHypRef Expression
1 bnj966.53 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝)
21fnfund 6680 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → Fun 𝐺)
323adant3 1132 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → Fun 𝐺)
4 opex 5484 . . . . . . 7 𝑛, 𝐶⟩ ∈ V
54snid 4684 . . . . . 6 𝑛, 𝐶⟩ ∈ {⟨𝑛, 𝐶⟩}
6 elun2 4206 . . . . . 6 (⟨𝑛, 𝐶⟩ ∈ {⟨𝑛, 𝐶⟩} → ⟨𝑛, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑛, 𝐶⟩}))
75, 6ax-mp 5 . . . . 5 𝑛, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑛, 𝐶⟩})
8 bnj966.13 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
97, 8eleqtrri 2843 . . . 4 𝑛, 𝐶⟩ ∈ 𝐺
10 funopfv 6972 . . . 4 (Fun 𝐺 → (⟨𝑛, 𝐶⟩ ∈ 𝐺 → (𝐺𝑛) = 𝐶))
113, 9, 10mpisyl 21 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺𝑛) = 𝐶)
12 simp22 1207 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑛 = suc 𝑚)
13 simp33 1211 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑛 = suc 𝑖)
14 bnj551 34718 . . . . 5 ((𝑛 = suc 𝑚𝑛 = suc 𝑖) → 𝑚 = 𝑖)
1512, 13, 14syl2anc 583 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑚 = 𝑖)
16 suceq 6461 . . . . . . . 8 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
1716eqeq2d 2751 . . . . . . 7 (𝑚 = 𝑖 → (𝑛 = suc 𝑚𝑛 = suc 𝑖))
1817biimpac 478 . . . . . 6 ((𝑛 = suc 𝑚𝑚 = 𝑖) → 𝑛 = suc 𝑖)
1918fveq2d 6924 . . . . 5 ((𝑛 = suc 𝑚𝑚 = 𝑖) → (𝐺𝑛) = (𝐺‘suc 𝑖))
20 bnj966.12 . . . . . . 7 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
21 fveq2 6920 . . . . . . . 8 (𝑚 = 𝑖 → (𝑓𝑚) = (𝑓𝑖))
2221bnj1113 34761 . . . . . . 7 (𝑚 = 𝑖 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2320, 22eqtrid 2792 . . . . . 6 (𝑚 = 𝑖𝐶 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2423adantl 481 . . . . 5 ((𝑛 = suc 𝑚𝑚 = 𝑖) → 𝐶 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2519, 24eqeq12d 2756 . . . 4 ((𝑛 = suc 𝑚𝑚 = 𝑖) → ((𝐺𝑛) = 𝐶 ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2612, 15, 25syl2anc 583 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → ((𝐺𝑛) = 𝐶 ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2711, 26mpbid 232 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
28 bnj966.44 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
29283adant3 1132 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝐶 ∈ V)
30 bnj966.3 . . . . . . . 8 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
3130bnj1235 34780 . . . . . . 7 (𝜒𝑓 Fn 𝑛)
32313ad2ant1 1133 . . . . . 6 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑓 Fn 𝑛)
33323ad2ant2 1134 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑓 Fn 𝑛)
34 simp23 1208 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑝 = suc 𝑛)
3529, 33, 34, 13bnj951 34751 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖))
36 bnj966.10 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
3736bnj923 34744 . . . . . . . 8 (𝑛𝐷𝑛 ∈ ω)
3830, 37bnj769 34738 . . . . . . 7 (𝜒𝑛 ∈ ω)
39383ad2ant1 1133 . . . . . 6 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑛 ∈ ω)
40 simp3 1138 . . . . . 6 ((𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖) → 𝑛 = suc 𝑖)
4139, 40bnj240 34675 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝑛 ∈ ω ∧ 𝑛 = suc 𝑖))
42 vex 3492 . . . . . . 7 𝑖 ∈ V
4342bnj216 34708 . . . . . 6 (𝑛 = suc 𝑖𝑖𝑛)
4443adantl 481 . . . . 5 ((𝑛 ∈ ω ∧ 𝑛 = suc 𝑖) → 𝑖𝑛)
4541, 44syl 17 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → 𝑖𝑛)
46 bnj658 34727 . . . . . . 7 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛))
4746anim1i 614 . . . . . 6 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) ∧ 𝑖𝑛) → ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝑖𝑛))
48 df-bnj17 34663 . . . . . 6 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝑖𝑛))
4947, 48sylibr 234 . . . . 5 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) ∧ 𝑖𝑛) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛))
508bnj945 34749 . . . . 5 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) → (𝐺𝑖) = (𝑓𝑖))
5149, 50syl 17 . . . 4 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖) ∧ 𝑖𝑛) → (𝐺𝑖) = (𝑓𝑖))
5235, 45, 51syl2anc 583 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺𝑖) = (𝑓𝑖))
5320, 8bnj958 34916 . . . . 5 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
5453bnj956 34752 . . . 4 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
5554eqeq2d 2751 . . 3 ((𝐺𝑖) = (𝑓𝑖) → ((𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5652, 55syl 17 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → ((𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5727, 56mpbird 257 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  c0 4352  {csn 4648  cop 4654   ciun 5015  suc csuc 6397  Fun wfun 6567   Fn wfn 6568  cfv 6573  ωcom 7903  w-bnj17 34662   predc-bnj14 34664   FrSe w-bnj15 34668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-id 5593  df-eprel 5599  df-fr 5652  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-bnj17 34663
This theorem is referenced by:  bnj910  34924
  Copyright terms: Public domain W3C validator