Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj721 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj721.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
Ref | Expression |
---|---|
bnj721 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj658 32631 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
2 | bnj721.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) | |
3 | 1, 2 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∧ w-bnj17 32565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-bnj17 32566 |
This theorem is referenced by: bnj570 32785 bnj594 32792 bnj999 32838 bnj1093 32860 |
Copyright terms: Public domain | W3C validator |