Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj721 Structured version   Visualization version   GIF version

Theorem bnj721 32637
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj721.1 ((𝜑𝜓𝜒) → 𝜏)
Assertion
Ref Expression
bnj721 ((𝜑𝜓𝜒𝜃) → 𝜏)

Proof of Theorem bnj721
StepHypRef Expression
1 bnj658 32631 . 2 ((𝜑𝜓𝜒𝜃) → (𝜑𝜓𝜒))
2 bnj721.1 . 2 ((𝜑𝜓𝜒) → 𝜏)
31, 2syl 17 1 ((𝜑𝜓𝜒𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  w-bnj17 32565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-bnj17 32566
This theorem is referenced by:  bnj570  32785  bnj594  32792  bnj999  32838  bnj1093  32860
  Copyright terms: Public domain W3C validator