| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj721 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj721.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) |
| Ref | Expression |
|---|---|
| bnj721 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj658 34765 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 2 | bnj721.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 ∧ w-bnj17 34700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-bnj17 34701 |
| This theorem is referenced by: bnj570 34919 bnj594 34926 bnj999 34972 bnj1093 34994 |
| Copyright terms: Public domain | W3C validator |