Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj944 Structured version   Visualization version   GIF version

Theorem bnj944 32918
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj944.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj944.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj944.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj944.4 (𝜑′[𝑝 / 𝑛]𝜑)
bnj944.7 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj944.10 𝐷 = (ω ∖ {∅})
bnj944.12 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj944.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj944.14 (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))
bnj944.15 (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
Assertion
Ref Expression
bnj944 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜑″)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛   𝑦,𝐴,𝑓,𝑖,𝑚   𝑅,𝑓,𝑖,𝑚,𝑛   𝑦,𝑅   𝑓,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑝)   𝐺(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑖,𝑚,𝑝)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj944
StepHypRef Expression
1 simpl 483 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → (𝑅 FrSe 𝐴𝑋𝐴))
2 bnj944.3 . . . . . . . 8 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
3 bnj667 32732 . . . . . . . 8 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) → (𝑓 Fn 𝑛𝜑𝜓))
42, 3sylbi 216 . . . . . . 7 (𝜒 → (𝑓 Fn 𝑛𝜑𝜓))
5 bnj944.14 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))
64, 5sylibr 233 . . . . . 6 (𝜒𝜏)
763ad2ant1 1132 . . . . 5 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝜏)
87adantl 482 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜏)
92bnj1232 32783 . . . . . . 7 (𝜒𝑛𝐷)
10 vex 3436 . . . . . . . 8 𝑚 ∈ V
1110bnj216 32711 . . . . . . 7 (𝑛 = suc 𝑚𝑚𝑛)
12 id 22 . . . . . . 7 (𝑝 = suc 𝑛𝑝 = suc 𝑛)
139, 11, 123anim123i 1150 . . . . . 6 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛𝐷𝑚𝑛𝑝 = suc 𝑛))
14 bnj944.15 . . . . . . 7 (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
15 3ancomb 1098 . . . . . . 7 ((𝑛𝐷𝑝 = suc 𝑛𝑚𝑛) ↔ (𝑛𝐷𝑚𝑛𝑝 = suc 𝑛))
1614, 15bitri 274 . . . . . 6 (𝜎 ↔ (𝑛𝐷𝑚𝑛𝑝 = suc 𝑛))
1713, 16sylibr 233 . . . . 5 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝜎)
1817adantl 482 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜎)
19 bnj253 32683 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝜏𝜎))
201, 8, 18, 19syl3anbrc 1342 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → (𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎))
21 bnj944.12 . . . 4 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
22 bnj944.10 . . . . 5 𝐷 = (ω ∖ {∅})
23 bnj944.1 . . . . 5 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
24 bnj944.2 . . . . 5 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2522, 5, 14, 23, 24bnj938 32917 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) ∈ V)
2621, 25eqeltrid 2843 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝐶 ∈ V)
2720, 26syl 17 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
28 bnj658 32731 . . . . . 6 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) → (𝑛𝐷𝑓 Fn 𝑛𝜑))
292, 28sylbi 216 . . . . 5 (𝜒 → (𝑛𝐷𝑓 Fn 𝑛𝜑))
30293ad2ant1 1132 . . . 4 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛𝐷𝑓 Fn 𝑛𝜑))
31 simp3 1137 . . . 4 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑝 = suc 𝑛)
32 bnj291 32690 . . . 4 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) ↔ ((𝑛𝐷𝑓 Fn 𝑛𝜑) ∧ 𝑝 = suc 𝑛))
3330, 31, 32sylanbrc 583 . . 3 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑))
3433adantl 482 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → (𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑))
35 bnj944.7 . . . . 5 (𝜑″[𝐺 / 𝑓]𝜑′)
36 bnj944.13 . . . . . . 7 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
37 opeq2 4805 . . . . . . . . 9 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → ⟨𝑛, 𝐶⟩ = ⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩)
3837sneqd 4573 . . . . . . . 8 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → {⟨𝑛, 𝐶⟩} = {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩})
3938uneq2d 4097 . . . . . . 7 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝑓 ∪ {⟨𝑛, 𝐶⟩}) = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}))
4036, 39eqtrid 2790 . . . . . 6 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → 𝐺 = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}))
4140sbceq1d 3721 . . . . 5 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → ([𝐺 / 𝑓]𝜑′[(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′))
4235, 41syl5bb 283 . . . 4 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (𝜑″[(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′))
4342imbi2d 341 . . 3 (𝐶 = if(𝐶 ∈ V, 𝐶, ∅) → (((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → 𝜑″) ↔ ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → [(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′)))
44 bnj944.4 . . . 4 (𝜑′[𝑝 / 𝑛]𝜑)
45 biid 260 . . . 4 ([(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′[(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′)
46 eqid 2738 . . . 4 (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) = (𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩})
47 0ex 5231 . . . . 5 ∅ ∈ V
4847elimel 4528 . . . 4 if(𝐶 ∈ V, 𝐶, ∅) ∈ V
4923, 44, 45, 22, 46, 48bnj929 32916 . . 3 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → [(𝑓 ∪ {⟨𝑛, if(𝐶 ∈ V, 𝐶, ∅)⟩}) / 𝑓]𝜑′)
5043, 49dedth 4517 . 2 (𝐶 ∈ V → ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → 𝜑″))
5127, 34, 50sylc 65 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜑″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  [wsbc 3716  cdif 3884  cun 3885  c0 4256  ifcif 4459  {csn 4561  cop 4567   ciun 4924  suc csuc 6268   Fn wfn 6428  cfv 6433  ωcom 7712  w-bnj17 32665   predc-bnj14 32667   FrSe w-bnj15 32671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-om 7713  df-bnj17 32666  df-bnj14 32668  df-bnj13 32670  df-bnj15 32672
This theorem is referenced by:  bnj910  32928
  Copyright terms: Public domain W3C validator