Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1154 Structured version   Visualization version   GIF version

Theorem bnj1154 34975
Description: Property of Fr. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1154 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem bnj1154
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 bnj658 34727 . 2 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → (𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅))
2 elisset 2826 . . . . 5 (𝐵 ∈ V → ∃𝑏 𝑏 = 𝐵)
32bnj708 34732 . . . 4 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑏 𝑏 = 𝐵)
4 df-fr 5652 . . . . . . . 8 (𝑅 Fr 𝐴 ↔ ∀𝑏((𝑏𝐴𝑏 ≠ ∅) → ∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥))
54biimpi 216 . . . . . . 7 (𝑅 Fr 𝐴 → ∀𝑏((𝑏𝐴𝑏 ≠ ∅) → ∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥))
6519.21bi 2190 . . . . . 6 (𝑅 Fr 𝐴 → ((𝑏𝐴𝑏 ≠ ∅) → ∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥))
763impib 1116 . . . . 5 ((𝑅 Fr 𝐴𝑏𝐴𝑏 ≠ ∅) → ∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥)
8 sseq1 4034 . . . . . . 7 (𝑏 = 𝐵 → (𝑏𝐴𝐵𝐴))
9 neeq1 3009 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 ≠ ∅ ↔ 𝐵 ≠ ∅))
108, 93anbi23d 1439 . . . . . 6 (𝑏 = 𝐵 → ((𝑅 Fr 𝐴𝑏𝐴𝑏 ≠ ∅) ↔ (𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅)))
11 raleq 3331 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
1211rexeqbi1dv 3347 . . . . . 6 (𝑏 = 𝐵 → (∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
1310, 12imbi12d 344 . . . . 5 (𝑏 = 𝐵 → (((𝑅 Fr 𝐴𝑏𝐴𝑏 ≠ ∅) → ∃𝑥𝑏𝑦𝑏 ¬ 𝑦𝑅𝑥) ↔ ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)))
147, 13mpbii 233 . . . 4 (𝑏 = 𝐵 → ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
153, 14bnj593 34721 . . 3 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑏((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
1615bnj937 34747 . 2 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))
171, 16mpd 15 1 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  wss 3976  c0 4352   class class class wbr 5166   Fr wfr 5649  w-bnj17 34662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-ss 3993  df-fr 5652  df-bnj17 34663
This theorem is referenced by:  bnj1190  34984
  Copyright terms: Public domain W3C validator