Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj967 Structured version   Visualization version   GIF version

Theorem bnj967 34959
Description: Technical lemma for bnj69 35024. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj967.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj967.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj967.10 𝐷 = (ω ∖ {∅})
bnj967.12 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj967.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj967.44 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
Assertion
Ref Expression
bnj967 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Distinct variable groups:   𝑦,𝑓   𝑦,𝑖   𝑦,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj967
StepHypRef Expression
1 bnj967.44 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
213adant3 1133 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → 𝐶 ∈ V)
3 bnj967.3 . . . . . . . . 9 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
43bnj1235 34818 . . . . . . . 8 (𝜒𝑓 Fn 𝑛)
543ad2ant1 1134 . . . . . . 7 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑓 Fn 𝑛)
653ad2ant2 1135 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → 𝑓 Fn 𝑛)
7 simp23 1209 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → 𝑝 = suc 𝑛)
8 simp3 1139 . . . . . . 7 ((𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛) → suc 𝑖𝑛)
983ad2ant3 1136 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → suc 𝑖𝑛)
102, 6, 7, 9bnj951 34789 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛))
11 bnj967.10 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
1211bnj923 34782 . . . . . . . . 9 (𝑛𝐷𝑛 ∈ ω)
133, 12bnj769 34776 . . . . . . . 8 (𝜒𝑛 ∈ ω)
14133ad2ant1 1134 . . . . . . 7 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑛 ∈ ω)
1514, 8bnj240 34713 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝑛 ∈ ω ∧ suc 𝑖𝑛))
16 nnord 7895 . . . . . . . 8 (𝑛 ∈ ω → Ord 𝑛)
17 ordtr 6398 . . . . . . . 8 (Ord 𝑛 → Tr 𝑛)
1816, 17syl 17 . . . . . . 7 (𝑛 ∈ ω → Tr 𝑛)
19 trsuc 6471 . . . . . . 7 ((Tr 𝑛 ∧ suc 𝑖𝑛) → 𝑖𝑛)
2018, 19sylan 580 . . . . . 6 ((𝑛 ∈ ω ∧ suc 𝑖𝑛) → 𝑖𝑛)
2115, 20syl 17 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → 𝑖𝑛)
22 bnj658 34765 . . . . . . 7 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛))
2322anim1i 615 . . . . . 6 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛) ∧ 𝑖𝑛) → ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝑖𝑛))
24 df-bnj17 34701 . . . . . 6 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝑖𝑛))
2523, 24sylibr 234 . . . . 5 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛) ∧ 𝑖𝑛) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛))
2610, 21, 25syl2anc 584 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛))
27 bnj967.13 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
2827bnj945 34787 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) → (𝐺𝑖) = (𝑓𝑖))
2926, 28syl 17 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺𝑖) = (𝑓𝑖))
3027bnj945 34787 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛) → (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖))
3110, 30syl 17 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖))
32 3simpb 1150 . . . 4 ((𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛) → (𝑖 ∈ ω ∧ suc 𝑖𝑛))
33323ad2ant3 1136 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝑖 ∈ ω ∧ suc 𝑖𝑛))
343bnj1254 34823 . . . . 5 (𝜒𝜓)
35343ad2ant1 1134 . . . 4 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝜓)
36353ad2ant2 1135 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → 𝜓)
3729, 31, 33, 36bnj951 34789 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → ((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))
38 bnj967.2 . . 3 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
39 bnj967.12 . . . 4 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
4039, 27bnj958 34954 . . 3 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
4138, 40bnj953 34953 . 2 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
4237, 41syl 17 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cdif 3948  cun 3949  c0 4333  {csn 4626  cop 4632   ciun 4991  Tr wtr 5259  Ord word 6383  suc csuc 6386   Fn wfn 6556  cfv 6561  ωcom 7887  w-bnj17 34700   predc-bnj14 34702   FrSe w-bnj15 34706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-reg 9632
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-tr 5260  df-id 5578  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-om 7888  df-bnj17 34701
This theorem is referenced by:  bnj910  34962
  Copyright terms: Public domain W3C validator