Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj967 Structured version   Visualization version   GIF version

Theorem bnj967 32825
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj967.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj967.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj967.10 𝐷 = (ω ∖ {∅})
bnj967.12 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj967.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj967.44 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
Assertion
Ref Expression
bnj967 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Distinct variable groups:   𝑦,𝑓   𝑦,𝑖   𝑦,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj967
StepHypRef Expression
1 bnj967.44 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
213adant3 1130 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → 𝐶 ∈ V)
3 bnj967.3 . . . . . . . . 9 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
43bnj1235 32684 . . . . . . . 8 (𝜒𝑓 Fn 𝑛)
543ad2ant1 1131 . . . . . . 7 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑓 Fn 𝑛)
653ad2ant2 1132 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → 𝑓 Fn 𝑛)
7 simp23 1206 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → 𝑝 = suc 𝑛)
8 simp3 1136 . . . . . . 7 ((𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛) → suc 𝑖𝑛)
983ad2ant3 1133 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → suc 𝑖𝑛)
102, 6, 7, 9bnj951 32655 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛))
11 bnj967.10 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
1211bnj923 32648 . . . . . . . . 9 (𝑛𝐷𝑛 ∈ ω)
133, 12bnj769 32642 . . . . . . . 8 (𝜒𝑛 ∈ ω)
14133ad2ant1 1131 . . . . . . 7 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑛 ∈ ω)
1514, 8bnj240 32578 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝑛 ∈ ω ∧ suc 𝑖𝑛))
16 nnord 7695 . . . . . . . 8 (𝑛 ∈ ω → Ord 𝑛)
17 ordtr 6265 . . . . . . . 8 (Ord 𝑛 → Tr 𝑛)
1816, 17syl 17 . . . . . . 7 (𝑛 ∈ ω → Tr 𝑛)
19 trsuc 6335 . . . . . . 7 ((Tr 𝑛 ∧ suc 𝑖𝑛) → 𝑖𝑛)
2018, 19sylan 579 . . . . . 6 ((𝑛 ∈ ω ∧ suc 𝑖𝑛) → 𝑖𝑛)
2115, 20syl 17 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → 𝑖𝑛)
22 bnj658 32631 . . . . . . 7 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛))
2322anim1i 614 . . . . . 6 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛) ∧ 𝑖𝑛) → ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝑖𝑛))
24 df-bnj17 32566 . . . . . 6 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝑖𝑛))
2523, 24sylibr 233 . . . . 5 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛) ∧ 𝑖𝑛) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛))
2610, 21, 25syl2anc 583 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛))
27 bnj967.13 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
2827bnj945 32653 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛) → (𝐺𝑖) = (𝑓𝑖))
2926, 28syl 17 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺𝑖) = (𝑓𝑖))
3027bnj945 32653 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ∧ suc 𝑖𝑛) → (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖))
3110, 30syl 17 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖))
32 3simpb 1147 . . . 4 ((𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛) → (𝑖 ∈ ω ∧ suc 𝑖𝑛))
33323ad2ant3 1133 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝑖 ∈ ω ∧ suc 𝑖𝑛))
343bnj1254 32689 . . . . 5 (𝜒𝜓)
35343ad2ant1 1131 . . . 4 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝜓)
36353ad2ant2 1132 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → 𝜓)
3729, 31, 33, 36bnj951 32655 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → ((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))
38 bnj967.2 . . 3 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
39 bnj967.12 . . . 4 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
4039, 27bnj958 32820 . . 3 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
4138, 40bnj953 32819 . 2 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
4237, 41syl 17 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  cun 3881  c0 4253  {csn 4558  cop 4564   ciun 4921  Tr wtr 5187  Ord word 6250  suc csuc 6253   Fn wfn 6413  cfv 6418  ωcom 7687  w-bnj17 32565   predc-bnj14 32567   FrSe w-bnj15 32571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-om 7688  df-bnj17 32566
This theorem is referenced by:  bnj910  32828
  Copyright terms: Public domain W3C validator