Proof of Theorem bnj967
Step | Hyp | Ref
| Expression |
1 | | bnj967.44 |
. . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝐶 ∈ V) |
2 | 1 | 3adant3 1134 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → 𝐶 ∈ V) |
3 | | bnj967.3 |
. . . . . . . . 9
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
4 | 3 | bnj1235 32497 |
. . . . . . . 8
⊢ (𝜒 → 𝑓 Fn 𝑛) |
5 | 4 | 3ad2ant1 1135 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝑓 Fn 𝑛) |
6 | 5 | 3ad2ant2 1136 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → 𝑓 Fn 𝑛) |
7 | | simp23 1210 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → 𝑝 = suc 𝑛) |
8 | | simp3 1140 |
. . . . . . 7
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛) → suc 𝑖 ∈ 𝑛) |
9 | 8 | 3ad2ant3 1137 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → suc 𝑖 ∈ 𝑛) |
10 | 2, 6, 7, 9 | bnj951 32468 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ suc 𝑖 ∈ 𝑛)) |
11 | | bnj967.10 |
. . . . . . . . . 10
⊢ 𝐷 = (ω ∖
{∅}) |
12 | 11 | bnj923 32460 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
13 | 3, 12 | bnj769 32454 |
. . . . . . . 8
⊢ (𝜒 → 𝑛 ∈ ω) |
14 | 13 | 3ad2ant1 1135 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝑛 ∈ ω) |
15 | 14, 8 | bnj240 32390 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → (𝑛 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) |
16 | | nnord 7652 |
. . . . . . . 8
⊢ (𝑛 ∈ ω → Ord 𝑛) |
17 | | ordtr 6227 |
. . . . . . . 8
⊢ (Ord
𝑛 → Tr 𝑛) |
18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (𝑛 ∈ ω → Tr 𝑛) |
19 | | trsuc 6297 |
. . . . . . 7
⊢ ((Tr
𝑛 ∧ suc 𝑖 ∈ 𝑛) → 𝑖 ∈ 𝑛) |
20 | 18, 19 | sylan 583 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ suc 𝑖 ∈ 𝑛) → 𝑖 ∈ 𝑛) |
21 | 15, 20 | syl 17 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → 𝑖 ∈ 𝑛) |
22 | | bnj658 32443 |
. . . . . . 7
⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ suc 𝑖 ∈ 𝑛) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛)) |
23 | 22 | anim1i 618 |
. . . . . 6
⊢ (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑖 ∈ 𝑛) → ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ 𝑛)) |
24 | | df-bnj17 32378 |
. . . . . 6
⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛) ∧ 𝑖 ∈ 𝑛)) |
25 | 23, 24 | sylibr 237 |
. . . . 5
⊢ (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ suc 𝑖 ∈ 𝑛) ∧ 𝑖 ∈ 𝑛) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛)) |
26 | 10, 21, 25 | syl2anc 587 |
. . . 4
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛)) |
27 | | bnj967.13 |
. . . . 5
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
28 | 27 | bnj945 32466 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛) → (𝐺‘𝑖) = (𝑓‘𝑖)) |
29 | 26, 28 | syl 17 |
. . 3
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘𝑖) = (𝑓‘𝑖)) |
30 | 27 | bnj945 32466 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ suc 𝑖 ∈ 𝑛) → (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖)) |
31 | 10, 30 | syl 17 |
. . 3
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖)) |
32 | | 3simpb 1151 |
. . . 4
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛) → (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) |
33 | 32 | 3ad2ant3 1137 |
. . 3
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛)) |
34 | 3 | bnj1254 32502 |
. . . . 5
⊢ (𝜒 → 𝜓) |
35 | 34 | 3ad2ant1 1135 |
. . . 4
⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝜓) |
36 | 35 | 3ad2ant2 1136 |
. . 3
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → 𝜓) |
37 | 29, 31, 33, 36 | bnj951 32468 |
. 2
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → ((𝐺‘𝑖) = (𝑓‘𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝜓)) |
38 | | bnj967.2 |
. . 3
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
39 | | bnj967.12 |
. . . 4
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
40 | 39, 27 | bnj958 32633 |
. . 3
⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
41 | 38, 40 | bnj953 32632 |
. 2
⊢ (((𝐺‘𝑖) = (𝑓‘𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛) ∧ 𝜓) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
42 | 37, 41 | syl 17 |
1
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛)) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |