Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj708 Structured version   Visualization version   GIF version

Theorem bnj708 32318
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj708.1 (𝜃𝜏)
Assertion
Ref Expression
bnj708 ((𝜑𝜓𝜒𝜃) → 𝜏)

Proof of Theorem bnj708
StepHypRef Expression
1 bnj645 32312 . 2 ((𝜑𝜓𝜒𝜃) → 𝜃)
2 bnj708.1 . 2 (𝜃𝜏)
31, 2syl 17 1 ((𝜑𝜓𝜒𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w-bnj17 32247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-bnj17 32248
This theorem is referenced by:  bnj1254  32372  bnj999  32521  bnj1001  32522  bnj1006  32523  bnj1049  32537  bnj1121  32548  bnj1145  32556  bnj1154  32562
  Copyright terms: Public domain W3C validator