| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj708 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj708.1 | ⊢ (𝜃 → 𝜏) |
| Ref | Expression |
|---|---|
| bnj708 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj645 34786 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 2 | bnj708.1 | . 2 ⊢ (𝜃 → 𝜏) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w-bnj17 34722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-bnj17 34723 |
| This theorem is referenced by: bnj1254 34845 bnj999 34994 bnj1001 34995 bnj1006 34996 bnj1049 35010 bnj1121 35021 bnj1145 35029 bnj1154 35035 |
| Copyright terms: Public domain | W3C validator |