Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj708 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj708.1 | ⊢ (𝜃 → 𝜏) |
Ref | Expression |
---|---|
bnj708 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj645 32312 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
2 | bnj708.1 | . 2 ⊢ (𝜃 → 𝜏) | |
3 | 1, 2 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w-bnj17 32247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-bnj17 32248 |
This theorem is referenced by: bnj1254 32372 bnj999 32521 bnj1001 32522 bnj1006 32523 bnj1049 32537 bnj1121 32548 bnj1145 32556 bnj1154 32562 |
Copyright terms: Public domain | W3C validator |