Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj570 Structured version   Visualization version   GIF version

Theorem bnj570 32885
Description: Technical lemma for bnj852 32901. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj570.3 𝐷 = (ω ∖ {∅})
bnj570.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj570.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj570.21 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
bnj570.24 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj570.26 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj570.40 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
bnj570.30 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj570 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = 𝐾)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑓   𝑦,𝑖
Allowed substitution hints:   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜌(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑓,𝑖,𝑚,𝑛,𝑝)   𝐾(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj570
StepHypRef Expression
1 bnj251 32681 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) ↔ (𝑅 FrSe 𝐴 ∧ (𝜏 ∧ (𝜂𝜌))))
2 bnj570.17 . . . . . 6 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
32simp3bi 1146 . . . . 5 (𝜏𝜓′)
4 bnj570.21 . . . . . . . 8 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
54simp1bi 1144 . . . . . . 7 (𝜌𝑖 ∈ ω)
65adantl 482 . . . . . 6 ((𝜂𝜌) → 𝑖 ∈ ω)
7 bnj570.19 . . . . . . 7 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
87, 4bnj563 32723 . . . . . 6 ((𝜂𝜌) → suc 𝑖𝑚)
96, 8jca 512 . . . . 5 ((𝜂𝜌) → (𝑖 ∈ ω ∧ suc 𝑖𝑚))
10 bnj570.30 . . . . . . . 8 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1110bnj946 32754 . . . . . . 7 (𝜓′ ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
12 sp 2176 . . . . . . 7 (∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
1311, 12sylbi 216 . . . . . 6 (𝜓′ → (𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
1413imp32 419 . . . . 5 ((𝜓′ ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑚)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
153, 9, 14syl2an 596 . . . 4 ((𝜏 ∧ (𝜂𝜌)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
161, 15simplbiim 505 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
17 bnj570.40 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
1817fnfund 6534 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂) → Fun 𝐺)
1918bnj721 32737 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → Fun 𝐺)
20 bnj570.26 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
2120bnj931 32750 . . . . 5 𝑓𝐺
2221a1i 11 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → 𝑓𝐺)
23 bnj667 32732 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝜏𝜂𝜌))
242bnj564 32724 . . . . . . 7 (𝜏 → dom 𝑓 = 𝑚)
25 eleq2 2827 . . . . . . . 8 (dom 𝑓 = 𝑚 → (suc 𝑖 ∈ dom 𝑓 ↔ suc 𝑖𝑚))
2625biimpar 478 . . . . . . 7 ((dom 𝑓 = 𝑚 ∧ suc 𝑖𝑚) → suc 𝑖 ∈ dom 𝑓)
2724, 8, 26syl2an 596 . . . . . 6 ((𝜏 ∧ (𝜂𝜌)) → suc 𝑖 ∈ dom 𝑓)
28273impb 1114 . . . . 5 ((𝜏𝜂𝜌) → suc 𝑖 ∈ dom 𝑓)
2923, 28syl 17 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → suc 𝑖 ∈ dom 𝑓)
3019, 22, 29bnj1502 32828 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖))
312simp1bi 1144 . . . . . . . . 9 (𝜏𝑓 Fn 𝑚)
32 bnj252 32682 . . . . . . . . . . . . . 14 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑚𝐷 ∧ (𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)))
3332simplbi 498 . . . . . . . . . . . . 13 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) → 𝑚𝐷)
347, 33sylbi 216 . . . . . . . . . . . 12 (𝜂𝑚𝐷)
35 eldifi 4061 . . . . . . . . . . . . 13 (𝑚 ∈ (ω ∖ {∅}) → 𝑚 ∈ ω)
36 bnj570.3 . . . . . . . . . . . . 13 𝐷 = (ω ∖ {∅})
3735, 36eleq2s 2857 . . . . . . . . . . . 12 (𝑚𝐷𝑚 ∈ ω)
38 nnord 7720 . . . . . . . . . . . 12 (𝑚 ∈ ω → Ord 𝑚)
3934, 37, 383syl 18 . . . . . . . . . . 11 (𝜂 → Ord 𝑚)
4039adantr 481 . . . . . . . . . 10 ((𝜂𝜌) → Ord 𝑚)
4140, 8jca 512 . . . . . . . . 9 ((𝜂𝜌) → (Ord 𝑚 ∧ suc 𝑖𝑚))
4231, 41anim12i 613 . . . . . . . 8 ((𝜏 ∧ (𝜂𝜌)) → (𝑓 Fn 𝑚 ∧ (Ord 𝑚 ∧ suc 𝑖𝑚)))
43 fndm 6536 . . . . . . . . 9 (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚)
44 elelsuc 6338 . . . . . . . . . 10 (suc 𝑖𝑚 → suc 𝑖 ∈ suc 𝑚)
45 ordsucelsuc 7669 . . . . . . . . . . 11 (Ord 𝑚 → (𝑖𝑚 ↔ suc 𝑖 ∈ suc 𝑚))
4645biimpar 478 . . . . . . . . . 10 ((Ord 𝑚 ∧ suc 𝑖 ∈ suc 𝑚) → 𝑖𝑚)
4744, 46sylan2 593 . . . . . . . . 9 ((Ord 𝑚 ∧ suc 𝑖𝑚) → 𝑖𝑚)
4843, 47anim12i 613 . . . . . . . 8 ((𝑓 Fn 𝑚 ∧ (Ord 𝑚 ∧ suc 𝑖𝑚)) → (dom 𝑓 = 𝑚𝑖𝑚))
49 eleq2 2827 . . . . . . . . 9 (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓𝑖𝑚))
5049biimpar 478 . . . . . . . 8 ((dom 𝑓 = 𝑚𝑖𝑚) → 𝑖 ∈ dom 𝑓)
5142, 48, 503syl 18 . . . . . . 7 ((𝜏 ∧ (𝜂𝜌)) → 𝑖 ∈ dom 𝑓)
52513impb 1114 . . . . . 6 ((𝜏𝜂𝜌) → 𝑖 ∈ dom 𝑓)
5323, 52syl 17 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → 𝑖 ∈ dom 𝑓)
5419, 22, 53bnj1502 32828 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺𝑖) = (𝑓𝑖))
5554iuneq1d 4951 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
5616, 30, 553eqtr4d 2788 . 2 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
57 bnj570.24 . 2 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
5856, 57eqtr4di 2796 1 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wne 2943  wral 3064  cdif 3884  cun 3885  wss 3887  c0 4256  {csn 4561  cop 4567   ciun 4924  dom cdm 5589  Ord word 6265  suc csuc 6268  Fun wfun 6427   Fn wfn 6428  cfv 6433  ωcom 7712  w-bnj17 32665   predc-bnj14 32667   FrSe w-bnj15 32671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-om 7713  df-bnj17 32666
This theorem is referenced by:  bnj571  32886
  Copyright terms: Public domain W3C validator