Proof of Theorem bnj570
| Step | Hyp | Ref
| Expression |
| 1 | | bnj251 34716 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) ↔ (𝑅 FrSe 𝐴 ∧ (𝜏 ∧ (𝜂 ∧ 𝜌)))) |
| 2 | | bnj570.17 |
. . . . . 6
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
| 3 | 2 | simp3bi 1148 |
. . . . 5
⊢ (𝜏 → 𝜓′) |
| 4 | | bnj570.21 |
. . . . . . . 8
⊢ (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) |
| 5 | 4 | simp1bi 1146 |
. . . . . . 7
⊢ (𝜌 → 𝑖 ∈ ω) |
| 6 | 5 | adantl 481 |
. . . . . 6
⊢ ((𝜂 ∧ 𝜌) → 𝑖 ∈ ω) |
| 7 | | bnj570.19 |
. . . . . . 7
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
| 8 | 7, 4 | bnj563 34757 |
. . . . . 6
⊢ ((𝜂 ∧ 𝜌) → suc 𝑖 ∈ 𝑚) |
| 9 | 6, 8 | jca 511 |
. . . . 5
⊢ ((𝜂 ∧ 𝜌) → (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑚)) |
| 10 | | bnj570.30 |
. . . . . . . 8
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 11 | 10 | bnj946 34788 |
. . . . . . 7
⊢ (𝜓′ ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 12 | | sp 2183 |
. . . . . . 7
⊢
(∀𝑖(𝑖 ∈ ω → (suc
𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 13 | 11, 12 | sylbi 217 |
. . . . . 6
⊢ (𝜓′ → (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 14 | 13 | imp32 418 |
. . . . 5
⊢ ((𝜓′ ∧ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑚)) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 15 | 3, 9, 14 | syl2an 596 |
. . . 4
⊢ ((𝜏 ∧ (𝜂 ∧ 𝜌)) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 16 | 1, 15 | simplbiim 504 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 17 | | bnj570.40 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝐺 Fn 𝑛) |
| 18 | 17 | fnfund 6669 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → Fun 𝐺) |
| 19 | 18 | bnj721 34771 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → Fun 𝐺) |
| 20 | | bnj570.26 |
. . . . . 6
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, 𝐶〉}) |
| 21 | 20 | bnj931 34784 |
. . . . 5
⊢ 𝑓 ⊆ 𝐺 |
| 22 | 21 | a1i 11 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → 𝑓 ⊆ 𝐺) |
| 23 | | bnj667 34766 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → (𝜏 ∧ 𝜂 ∧ 𝜌)) |
| 24 | 2 | bnj564 34758 |
. . . . . . 7
⊢ (𝜏 → dom 𝑓 = 𝑚) |
| 25 | | eleq2 2830 |
. . . . . . . 8
⊢ (dom
𝑓 = 𝑚 → (suc 𝑖 ∈ dom 𝑓 ↔ suc 𝑖 ∈ 𝑚)) |
| 26 | 25 | biimpar 477 |
. . . . . . 7
⊢ ((dom
𝑓 = 𝑚 ∧ suc 𝑖 ∈ 𝑚) → suc 𝑖 ∈ dom 𝑓) |
| 27 | 24, 8, 26 | syl2an 596 |
. . . . . 6
⊢ ((𝜏 ∧ (𝜂 ∧ 𝜌)) → suc 𝑖 ∈ dom 𝑓) |
| 28 | 27 | 3impb 1115 |
. . . . 5
⊢ ((𝜏 ∧ 𝜂 ∧ 𝜌) → suc 𝑖 ∈ dom 𝑓) |
| 29 | 23, 28 | syl 17 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → suc 𝑖 ∈ dom 𝑓) |
| 30 | 19, 22, 29 | bnj1502 34862 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖)) |
| 31 | 2 | simp1bi 1146 |
. . . . . . . . 9
⊢ (𝜏 → 𝑓 Fn 𝑚) |
| 32 | | bnj252 34717 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑚 ∈ 𝐷 ∧ (𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))) |
| 33 | 32 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) → 𝑚 ∈ 𝐷) |
| 34 | 7, 33 | sylbi 217 |
. . . . . . . . . . . 12
⊢ (𝜂 → 𝑚 ∈ 𝐷) |
| 35 | | eldifi 4131 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (ω ∖
{∅}) → 𝑚 ∈
ω) |
| 36 | | bnj570.3 |
. . . . . . . . . . . . 13
⊢ 𝐷 = (ω ∖
{∅}) |
| 37 | 35, 36 | eleq2s 2859 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ 𝐷 → 𝑚 ∈ ω) |
| 38 | | nnord 7895 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ω → Ord 𝑚) |
| 39 | 34, 37, 38 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜂 → Ord 𝑚) |
| 40 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜂 ∧ 𝜌) → Ord 𝑚) |
| 41 | 40, 8 | jca 511 |
. . . . . . . . 9
⊢ ((𝜂 ∧ 𝜌) → (Ord 𝑚 ∧ suc 𝑖 ∈ 𝑚)) |
| 42 | 31, 41 | anim12i 613 |
. . . . . . . 8
⊢ ((𝜏 ∧ (𝜂 ∧ 𝜌)) → (𝑓 Fn 𝑚 ∧ (Ord 𝑚 ∧ suc 𝑖 ∈ 𝑚))) |
| 43 | | fndm 6671 |
. . . . . . . . 9
⊢ (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚) |
| 44 | | elelsuc 6457 |
. . . . . . . . . 10
⊢ (suc
𝑖 ∈ 𝑚 → suc 𝑖 ∈ suc 𝑚) |
| 45 | | ordsucelsuc 7842 |
. . . . . . . . . . 11
⊢ (Ord
𝑚 → (𝑖 ∈ 𝑚 ↔ suc 𝑖 ∈ suc 𝑚)) |
| 46 | 45 | biimpar 477 |
. . . . . . . . . 10
⊢ ((Ord
𝑚 ∧ suc 𝑖 ∈ suc 𝑚) → 𝑖 ∈ 𝑚) |
| 47 | 44, 46 | sylan2 593 |
. . . . . . . . 9
⊢ ((Ord
𝑚 ∧ suc 𝑖 ∈ 𝑚) → 𝑖 ∈ 𝑚) |
| 48 | 43, 47 | anim12i 613 |
. . . . . . . 8
⊢ ((𝑓 Fn 𝑚 ∧ (Ord 𝑚 ∧ suc 𝑖 ∈ 𝑚)) → (dom 𝑓 = 𝑚 ∧ 𝑖 ∈ 𝑚)) |
| 49 | | eleq2 2830 |
. . . . . . . . 9
⊢ (dom
𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑚)) |
| 50 | 49 | biimpar 477 |
. . . . . . . 8
⊢ ((dom
𝑓 = 𝑚 ∧ 𝑖 ∈ 𝑚) → 𝑖 ∈ dom 𝑓) |
| 51 | 42, 48, 50 | 3syl 18 |
. . . . . . 7
⊢ ((𝜏 ∧ (𝜂 ∧ 𝜌)) → 𝑖 ∈ dom 𝑓) |
| 52 | 51 | 3impb 1115 |
. . . . . 6
⊢ ((𝜏 ∧ 𝜂 ∧ 𝜌) → 𝑖 ∈ dom 𝑓) |
| 53 | 23, 52 | syl 17 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → 𝑖 ∈ dom 𝑓) |
| 54 | 19, 22, 53 | bnj1502 34862 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → (𝐺‘𝑖) = (𝑓‘𝑖)) |
| 55 | 54 | iuneq1d 5019 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → ∪
𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 56 | 16, 30, 55 | 3eqtr4d 2787 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 57 | | bnj570.24 |
. 2
⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| 58 | 56, 57 | eqtr4di 2795 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ∧ 𝜌) → (𝐺‘suc 𝑖) = 𝐾) |