Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj832 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj832.1 | ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) |
bnj832.2 | ⊢ (𝜑 → 𝜏) |
Ref | Expression |
---|---|
bnj832 | ⊢ (𝜂 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj832.1 | . 2 ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) | |
2 | bnj832.2 | . . 3 ⊢ (𝜑 → 𝜏) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝜂 → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: bnj1379 32710 bnj605 32787 bnj908 32811 bnj1145 32873 bnj1442 32929 bnj1450 32930 bnj1489 32936 bnj1501 32947 bnj1523 32951 |
Copyright terms: Public domain | W3C validator |