Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1093 Structured version   Visualization version   GIF version

Theorem bnj1093 31661
Description: Technical lemma for bnj69 31691. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1093.1 𝑗(((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑓𝑖) ⊆ 𝐵)
bnj1093.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1093.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
Assertion
Ref Expression
bnj1093 ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑗(𝜑0 → (𝑓𝑖) ⊆ 𝐵))
Distinct variable groups:   𝜒,𝑗   𝜏,𝑖   𝜃,𝑖   𝜏,𝑗   𝜃,𝑗   𝐷,𝑖   𝑓,𝑖   𝑖,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜒(𝑦,𝑓,𝑖,𝑛)   𝜃(𝑦,𝑓,𝑛)   𝜏(𝑦,𝑓,𝑛)   𝜁(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐴(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑗,𝑛)   𝐷(𝑦,𝑓,𝑗,𝑛)   𝑅(𝑦,𝑓,𝑖,𝑗,𝑛)   𝜑0(𝑦,𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1093
StepHypRef Expression
1 bnj1093.2 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
21bnj1095 31465 . . . . 5 (𝜓 → ∀𝑖𝜓)
3 bnj1093.3 . . . . 5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
42, 3bnj1096 31466 . . . 4 (𝜒 → ∀𝑖𝜒)
54bnj1350 31509 . . 3 ((𝜃𝜏𝜒) → ∀𝑖(𝜃𝜏𝜒))
6 bnj1093.1 . . . . 5 𝑗(((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑓𝑖) ⊆ 𝐵)
7 impexp 443 . . . . . 6 ((((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑓𝑖) ⊆ 𝐵) ↔ ((𝜃𝜏𝜒) → (𝜑0 → (𝑓𝑖) ⊆ 𝐵)))
87exbii 1892 . . . . 5 (∃𝑗(((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑓𝑖) ⊆ 𝐵) ↔ ∃𝑗((𝜃𝜏𝜒) → (𝜑0 → (𝑓𝑖) ⊆ 𝐵)))
96, 8mpbi 222 . . . 4 𝑗((𝜃𝜏𝜒) → (𝜑0 → (𝑓𝑖) ⊆ 𝐵))
10919.37iv 1991 . . 3 ((𝜃𝜏𝜒) → ∃𝑗(𝜑0 → (𝑓𝑖) ⊆ 𝐵))
115, 10alrimih 1867 . 2 ((𝜃𝜏𝜒) → ∀𝑖𝑗(𝜑0 → (𝑓𝑖) ⊆ 𝐵))
1211bnj721 31440 1 ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑗(𝜑0 → (𝑓𝑖) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071  wal 1599   = wceq 1601  wex 1823  wcel 2106  wral 3089  wss 3791   ciun 4753  suc csuc 5978   Fn wfn 6130  cfv 6135  ωcom 7343  w-bnj17 31368   predc-bnj14 31370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-10 2134  ax-12 2162
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-ral 3094  df-bnj17 31369
This theorem is referenced by:  bnj1030  31668
  Copyright terms: Public domain W3C validator