|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1093 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35024. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1093.1 | ⊢ ∃𝑗(((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → (𝑓‘𝑖) ⊆ 𝐵) | 
| bnj1093.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | 
| bnj1093.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | 
| Ref | Expression | 
|---|---|
| bnj1093 | ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1093.2 | . . . . . 6 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 2 | 1 | bnj1095 34795 | . . . . 5 ⊢ (𝜓 → ∀𝑖𝜓) | 
| 3 | bnj1093.3 | . . . . 5 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 4 | 2, 3 | bnj1096 34796 | . . . 4 ⊢ (𝜒 → ∀𝑖𝜒) | 
| 5 | 4 | bnj1350 34839 | . . 3 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → ∀𝑖(𝜃 ∧ 𝜏 ∧ 𝜒)) | 
| 6 | bnj1093.1 | . . . . 5 ⊢ ∃𝑗(((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → (𝑓‘𝑖) ⊆ 𝐵) | |
| 7 | impexp 450 | . . . . . 6 ⊢ ((((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → (𝑓‘𝑖) ⊆ 𝐵) ↔ ((𝜃 ∧ 𝜏 ∧ 𝜒) → (𝜑0 → (𝑓‘𝑖) ⊆ 𝐵))) | |
| 8 | 7 | exbii 1848 | . . . . 5 ⊢ (∃𝑗(((𝜃 ∧ 𝜏 ∧ 𝜒) ∧ 𝜑0) → (𝑓‘𝑖) ⊆ 𝐵) ↔ ∃𝑗((𝜃 ∧ 𝜏 ∧ 𝜒) → (𝜑0 → (𝑓‘𝑖) ⊆ 𝐵))) | 
| 9 | 6, 8 | mpbi 230 | . . . 4 ⊢ ∃𝑗((𝜃 ∧ 𝜏 ∧ 𝜒) → (𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 10 | 9 | 19.37iv 1948 | . . 3 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → ∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 11 | 5, 10 | alrimih 1824 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒) → ∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) | 
| 12 | 11 | bnj721 34771 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖∃𝑗(𝜑0 → (𝑓‘𝑖) ⊆ 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 ∪ ciun 4991 suc csuc 6386 Fn wfn 6556 ‘cfv 6561 ωcom 7887 ∧ w-bnj17 34700 predc-bnj14 34702 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-ral 3062 df-bnj17 34701 | 
| This theorem is referenced by: bnj1030 35001 | 
| Copyright terms: Public domain | W3C validator |