| Metamath
Proof Explorer Theorem List (p. 460 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fperdvper 45901* | The derivative of a periodic function is periodic. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = (ℝ D 𝐹) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐺) → ((𝑥 + 𝑇) ∈ dom 𝐺 ∧ (𝐺‘(𝑥 + 𝑇)) = (𝐺‘𝑥))) | ||
| Theorem | dvasinbx 45902* | Derivative exercise: the derivative with respect to y of A x sin(By), given two constants 𝐴 and 𝐵. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · (sin‘(𝐵 · 𝑦))))) = (𝑦 ∈ ℂ ↦ ((𝐴 · 𝐵) · (cos‘(𝐵 · 𝑦))))) | ||
| Theorem | dvresioo 45903 | Restriction of a derivative to an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℝ D (𝐹 ↾ (𝐵(,)𝐶))) = ((ℝ D 𝐹) ↾ (𝐵(,)𝐶))) | ||
| Theorem | dvdivf 45904 | The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) & ⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) & ⊢ (𝜑 → dom (𝑆 D 𝐺) = 𝑋) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) = ((((𝑆 D 𝐹) ∘f · 𝐺) ∘f − ((𝑆 D 𝐺) ∘f · 𝐹)) ∘f / (𝐺 ∘f · 𝐺))) | ||
| Theorem | dvdivbd 45905* | A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℝ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐶) ≤ 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐵) ≤ 𝑅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐷) ≤ 𝑇) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (abs‘𝐴) ≤ 𝑄) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐵)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐸 ≤ (abs‘𝐵)) & ⊢ 𝐹 = (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐵))) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ 𝑋 (abs‘(𝐹‘𝑥)) ≤ 𝑏) | ||
| Theorem | dvsubcncf 45906 | A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f − 𝐺)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | dvmulcncf 45907 | A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶ℂ) & ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f · 𝐺)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | dvcosax 45908* | Derivative exercise: the derivative with respect to x of cos(Ax), given a constant 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘(𝐴 · 𝑥)))) = (𝑥 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑥))))) | ||
| Theorem | dvdivcncf 45909 | A sufficient condition for the derivative of a quotient to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) & ⊢ (𝜑 → 𝐺:𝑋⟶(ℂ ∖ {0})) & ⊢ (𝜑 → (𝑆 D 𝐹) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑆 D 𝐺) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑆 D (𝐹 ∘f / 𝐺)) ∈ (𝑋–cn→ℂ)) | ||
| Theorem | dvbdfbdioolem1 45910* | Given a function with bounded derivative, on an open interval, here is an absolute bound to the difference of the image of two points in the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾) & ⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)𝐵)) ⇒ ⊢ (𝜑 → ((abs‘((𝐹‘𝐷) − (𝐹‘𝐶))) ≤ (𝐾 · (𝐷 − 𝐶)) ∧ (abs‘((𝐹‘𝐷) − (𝐹‘𝐶))) ≤ (𝐾 · (𝐵 − 𝐴)))) | ||
| Theorem | dvbdfbdioolem2 45911* | A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾) & ⊢ 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵 − 𝐴))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑀) | ||
| Theorem | dvbdfbdioo 45912* | A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑎) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑥)) ≤ 𝑏) | ||
| Theorem | ioodvbdlimc1lem1 45913* | If 𝐹 has bounded derivative on (𝐴(,)𝐵) then a sequence of points in its image converges to its lim sup. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) & ⊢ 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗))) & ⊢ (𝜑 → 𝑅 ∈ dom ⇝ ) & ⊢ 𝐾 = inf({𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (lim sup‘𝑆)) | ||
| Theorem | ioodvbdlimc1lem2 45914* | Limit at the lower bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) & ⊢ 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) & ⊢ 𝑀 = ((⌊‘(1 / (𝐵 − 𝐴))) + 1) & ⊢ 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝐴 + (1 / 𝑗)))) & ⊢ 𝑅 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐴 + (1 / 𝑗))) & ⊢ 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐴)) < (1 / 𝑗))) ⇒ ⊢ (𝜑 → (lim sup‘𝑆) ∈ (𝐹 limℂ 𝐴)) | ||
| Theorem | ioodvbdlimc1 45915* | A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐴) ≠ ∅) | ||
| Theorem | ioodvbdlimc2lem 45916* | Limit at the upper bound of an open interval, for a function with bounded derivative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) & ⊢ 𝑌 = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) & ⊢ 𝑀 = ((⌊‘(1 / (𝐵 − 𝐴))) + 1) & ⊢ 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) & ⊢ 𝑅 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐵 − (1 / 𝑗))) & ⊢ 𝑁 = if(𝑀 ≤ ((⌊‘(𝑌 / (𝑥 / 2))) + 1), ((⌊‘(𝑌 / (𝑥 / 2))) + 1), 𝑀) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ≥‘𝑁)) ∧ (abs‘((𝑆‘𝑗) − (lim sup‘𝑆))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗))) ⇒ ⊢ (𝜑 → (lim sup‘𝑆) ∈ (𝐹 limℂ 𝐵)) | ||
| Theorem | ioodvbdlimc2 45917* | A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by AV, 3-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) & ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) ⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) | ||
| Theorem | dvdmsscn 45918 | 𝑋 is a subset of ℂ. This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) ⇒ ⊢ (𝜑 → 𝑋 ⊆ ℂ) | ||
| Theorem | dvmptmulf 45919* | Function-builder for derivative, product rule. A version of dvmptmul 25881 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐶)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐶))) = (𝑥 ∈ 𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴)))) | ||
| Theorem | dvnmptdivc 45920* | Function-builder for iterated derivative, division rule for constant divisor. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ (0...𝑀)) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑛) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 / 𝐶)))‘𝑛) = (𝑥 ∈ 𝑋 ↦ (𝐵 / 𝐶))) | ||
| Theorem | dvdsn1add 45921 | If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀, then 𝐾 does not divide (𝑀 + 𝑁). (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((¬ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → ¬ 𝐾 ∥ (𝑀 + 𝑁))) | ||
| Theorem | dvxpaek 45922* | Derivative of the polynomial (𝑥 + 𝐴)↑𝐾. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) | ||
| Theorem | dvnmptconst 45923* | The 𝑁-th derivative of a constant function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ 𝐴))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) | ||
| Theorem | dvnxpaek 45924* | The 𝑛-th derivative of the polynomial (𝑥 + 𝐴)↑𝐾. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾)) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(𝐾 < 𝑁, 0, (((!‘𝐾) / (!‘(𝐾 − 𝑁))) · ((𝑥 + 𝐴)↑(𝐾 − 𝑁)))))) | ||
| Theorem | dvnmul 45925* | Function-builder for the 𝑁-th derivative, product rule. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ 𝐴) & ⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑘):𝑋⟶ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐺)‘𝑘):𝑋⟶ℂ) & ⊢ 𝐶 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐹)‘𝑘)) & ⊢ 𝐷 = (𝑘 ∈ (0...𝑁) ↦ ((𝑆 D𝑛 𝐺)‘𝑘)) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)))‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (((𝐶‘𝑘)‘𝑥) · ((𝐷‘(𝑁 − 𝑘))‘𝑥))))) | ||
| Theorem | dvmptfprodlem 45926* | Induction step for dvmptfprod 45927. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑖𝐹 & ⊢ Ⅎ𝑗𝐺 & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝐸 ∈ V) & ⊢ (𝜑 → ¬ 𝐸 ∈ 𝐷) & ⊢ (𝜑 → (𝐷 ∪ {𝐸}) ⊆ 𝐼) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ 𝐷) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝐷 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝐷 (𝐶 · ∏𝑖 ∈ (𝐷 ∖ {𝑗})𝐴))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐹)) = (𝑥 ∈ 𝑋 ↦ 𝐺)) & ⊢ (𝑖 = 𝐸 → 𝐴 = 𝐹) & ⊢ (𝑗 = 𝐸 → 𝐶 = 𝐺) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ (𝐷 ∪ {𝐸})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ (𝐷 ∪ {𝐸})(𝐶 · ∏𝑖 ∈ ((𝐷 ∪ {𝐸}) ∖ {𝑗})𝐴))) | ||
| Theorem | dvmptfprod 45927* | Function-builder for derivative, finite product rule. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ Ⅎ𝑖𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ 𝐽 = (𝐾 ↾t 𝑆) & ⊢ 𝐾 = (TopOpen‘ℂfld) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) & ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))) | ||
| Theorem | dvnprodlem1 45928* | 𝐷 is bijective. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ 𝐶 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) & ⊢ (𝜑 → 𝐽 ∈ ℕ0) & ⊢ 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ (𝜑 → 𝑍 ∈ 𝑇) & ⊢ (𝜑 → ¬ 𝑍 ∈ 𝑅) & ⊢ (𝜑 → (𝑅 ∪ {𝑍}) ⊆ 𝑇) ⇒ ⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) | ||
| Theorem | dvnprodlem2 45929* | Induction step for dvnprodlem2 45929. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) & ⊢ 𝐶 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) & ⊢ (𝜑 → 𝑅 ⊆ 𝑇) & ⊢ (𝜑 → 𝑍 ∈ (𝑇 ∖ 𝑅)) & ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) & ⊢ 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)))‘𝐽) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | ||
| Theorem | dvnprodlem3 45930* | The multinomial formula for the 𝑘-th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥)) & ⊢ 𝐷 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | ||
| Theorem | dvnprod 45931* | The multinomial formula for the 𝑁-th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑇 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑇 ((𝐻‘𝑡)‘𝑥)) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑇) ∣ Σ𝑡 ∈ 𝑇 (𝑐‘𝑡) = 𝑛}) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑡 ∈ 𝑇 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑇 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) | ||
| Theorem | itgsin0pilem1 45932* | Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐶 = (𝑡 ∈ (0[,]π) ↦ -(cos‘𝑡)) ⇒ ⊢ ∫(0(,)π)(sin‘𝑥) d𝑥 = 2 | ||
| Theorem | ibliccsinexp 45933* | sin^n on a closed interval is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) | ||
| Theorem | itgsin0pi 45934 | Calculation of the integral for sine on the (0,π) interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ ∫(0(,)π)(sin‘𝑥) d𝑥 = 2 | ||
| Theorem | iblioosinexp 45935* | sin^n on an open integral is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) | ||
| Theorem | itgsinexplem1 45936* | Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) & ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ -(cos‘𝑥)) & ⊢ 𝐻 = (𝑥 ∈ ℂ ↦ ((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥))) & ⊢ 𝐼 = (𝑥 ∈ ℂ ↦ (((sin‘𝑥)↑𝑁) · (sin‘𝑥))) & ⊢ 𝐿 = (𝑥 ∈ ℂ ↦ (((𝑁 · ((sin‘𝑥)↑(𝑁 − 1))) · (cos‘𝑥)) · -(cos‘𝑥))) & ⊢ 𝑀 = (𝑥 ∈ ℂ ↦ (((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → ∫(0(,)π)(((sin‘𝑥)↑𝑁) · (sin‘𝑥)) d𝑥 = (𝑁 · ∫(0(,)π)(((cos‘𝑥)↑2) · ((sin‘𝑥)↑(𝑁 − 1))) d𝑥)) | ||
| Theorem | itgsinexp 45937* | A recursive formula for the integral of sin^N on the interval (0,π) . (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) ⇒ ⊢ (𝜑 → (𝐼‘𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2)))) | ||
| Theorem | iblconstmpt 45938* | A constant function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℂ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | ||
| Theorem | itgeq1d 45939* | Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐶 d𝑥) | ||
| Theorem | mbfres2cn 45940 | Measurability of a piecewise function: if 𝐹 is measurable on subsets 𝐵 and 𝐶 of its domain, and these pieces make up all of 𝐴, then 𝐹 is measurable on the whole domain. Similar to mbfres2 25562 but here the theorem is extended to complex-valued functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ MblFn) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ MblFn) & ⊢ (𝜑 → (𝐵 ∪ 𝐶) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹 ∈ MblFn) | ||
| Theorem | vol0 45941 | The measure of the empty set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (vol‘∅) = 0 | ||
| Theorem | ditgeqiooicc 45942* | A function 𝐹 on an open interval, has the same directed integral as its extension 𝐺 on the closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵](𝐹‘𝑥) d𝑥 = ⨜[𝐴 → 𝐵](𝐺‘𝑥) d𝑥) | ||
| Theorem | volge0 45943 | The volume of a set is always nonnegative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ dom vol → 0 ≤ (vol‘𝐴)) | ||
| Theorem | cnbdibl 45944* | A continuous bounded function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → (vol‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
| Theorem | snmbl 45945 | A singleton is measurable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ ℝ → {𝐴} ∈ dom vol) | ||
| Theorem | ditgeq3d 45946* | Equality theorem for the directed integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐷 = 𝐸) ⇒ ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐷 d𝑥 = ⨜[𝐴 → 𝐵]𝐸 d𝑥) | ||
| Theorem | iblempty 45947 | The empty function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ∅ ∈ 𝐿1 | ||
| Theorem | iblsplit 45948* | The union of two integrable functions is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) | ||
| Theorem | volsn 45949 | A singleton has 0 Lebesgue measure. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝐴 ∈ ℝ → (vol‘{𝐴}) = 0) | ||
| Theorem | itgvol0 45950* | If the domani is negligible, the function is integrable and the integral is 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐴) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ∧ ∫𝐴𝐵 d𝑥 = 0)) | ||
| Theorem | itgcoscmulx 45951* | Exercise: the integral of 𝑥 ↦ cos𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → ∫(𝐵(,)𝐶)(cos‘(𝐴 · 𝑥)) d𝑥 = (((sin‘(𝐴 · 𝐶)) − (sin‘(𝐴 · 𝐵))) / 𝐴)) | ||
| Theorem | iblsplitf 45952* | A version of iblsplit 45948 using bound-variable hypotheses instead of distinct variable conditions". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) = 0) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝐿1) & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑈 ↦ 𝐶) ∈ 𝐿1) | ||
| Theorem | ibliooicc 45953* | If a function is integrable on an open interval, it is integrable on the corresponding closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐶) ∈ 𝐿1) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐶) ∈ 𝐿1) | ||
| Theorem | volioc 45954 | The measure of a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,]𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | iblspltprt 45955* | If a function is integrable on any interval of a partition, then it is integrable on the whole interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → (𝑃‘𝑖) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) & ⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑃‘𝑀)[,](𝑃‘𝑁))) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃‘𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1) ⇒ ⊢ (𝜑 → (𝑡 ∈ ((𝑃‘𝑀)[,](𝑃‘𝑁)) ↦ 𝐴) ∈ 𝐿1) | ||
| Theorem | itgsincmulx 45956* | Exercise: the integral of 𝑥 ↦ sin𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴)) | ||
| Theorem | itgsubsticclem 45957* | lemma for itgsubsticc 45958. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) & ⊢ 𝐺 = (𝑢 ∈ ℝ ↦ if(𝑢 ∈ (𝐾[,]𝐿), (𝐹‘𝑢), if(𝑢 < 𝐾, (𝐹‘𝐾), (𝐹‘𝐿)))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐾[,]𝐿)–cn→ℂ)) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → 𝐾 ≤ 𝐿) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
| Theorem | itgsubsticc 45958* | Integration by u-substitution. The main difference with respect to itgsubst 25972 is that here we consider the range of 𝐴(𝑥) to be in the closed interval (𝐾[,]𝐿). If 𝐴(𝑥) is a continuous, differentiable function from [𝑋, 𝑌] to (𝑍, 𝑊), whose derivative is continuous and integrable, and 𝐶(𝑢) is a continuous function on (𝑍, 𝑊), then the integral of 𝐶(𝑢) from 𝐾 = 𝐴(𝑋) to 𝐿 = 𝐴(𝑌) is equal to the integral of 𝐶(𝐴(𝑥)) D 𝐴(𝑥) from 𝑋 to 𝑌. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴) ∈ ((𝑋[,]𝑌)–cn→(𝐾[,]𝐿))) & ⊢ (𝜑 → (𝑢 ∈ (𝐾[,]𝐿) ↦ 𝐶) ∈ ((𝐾[,]𝐿)–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ (((𝑋(,)𝑌)–cn→ℂ) ∩ 𝐿1)) & ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑋[,]𝑌) ↦ 𝐴)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)) & ⊢ (𝑢 = 𝐴 → 𝐶 = 𝐸) & ⊢ (𝑥 = 𝑋 → 𝐴 = 𝐾) & ⊢ (𝑥 = 𝑌 → 𝐴 = 𝐿) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ℝ) ⇒ ⊢ (𝜑 → ⨜[𝐾 → 𝐿]𝐶 d𝑢 = ⨜[𝑋 → 𝑌](𝐸 · 𝐵) d𝑥) | ||
| Theorem | itgioocnicc 45959* | The integral of a piecewise continuous function 𝐹 on an open interval is equal to the integral of the continuous function 𝐺, in the corresponding closed interval. 𝐺 is equal to 𝐹 on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) & ⊢ (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴)) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵)) & ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) ⇒ ⊢ (𝜑 → (𝐺 ∈ 𝐿1 ∧ ∫(𝐴[,]𝐵)(𝐺‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) | ||
| Theorem | iblcncfioo 45960 | A continuous function 𝐹 on an open interval (𝐴(,)𝐵) with a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵 is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | ||
| Theorem | itgspltprt 45961* | The ∫ integral splits on a given partition 𝑃. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) & ⊢ (𝜑 → 𝑃:(𝑀...𝑁)⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) & ⊢ ((𝜑 ∧ 𝑡 ∈ ((𝑃‘𝑀)[,](𝑃‘𝑁))) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀..^𝑁)) → (𝑡 ∈ ((𝑃‘𝑖)[,](𝑃‘(𝑖 + 1))) ↦ 𝐴) ∈ 𝐿1) ⇒ ⊢ (𝜑 → ∫((𝑃‘𝑀)[,](𝑃‘𝑁))𝐴 d𝑡 = Σ𝑖 ∈ (𝑀..^𝑁)∫((𝑃‘𝑖)[,](𝑃‘(𝑖 + 1)))𝐴 d𝑡) | ||
| Theorem | itgiccshift 45962* | The integral of a function, 𝐹 stays the same if its closed interval domain is shifted by 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ 𝐺 = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹‘(𝑥 − 𝑇))) ⇒ ⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐺‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
| Theorem | itgperiod 45963* | The integral of a periodic function, with period 𝑇 stays the same if the domain of integration is shifted. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
| Theorem | itgsbtaddcnst 45964* | Integral substitution, adding a constant to the function's argument. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) ⇒ ⊢ (𝜑 → ⨜[(𝐴 − 𝑋) → (𝐵 − 𝑋)](𝐹‘(𝑋 + 𝑠)) d𝑠 = ⨜[𝐴 → 𝐵](𝐹‘𝑡) d𝑡) | ||
| Theorem | volico 45965 | The measure of left-closed, right-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | ||
| Theorem | sublevolico 45966 | The Lebesgue measure of a left-closed, right-open interval is greater than or equal to the difference of the two bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐵 − 𝐴) ≤ (vol‘(𝐴[,)𝐵))) | ||
| Theorem | dmvolss 45967 | Lebesgue measurable sets are subsets of Real numbers. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ dom vol ⊆ 𝒫 ℝ | ||
| Theorem | ismbl3 45968* | The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl2 25444, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥 ∩ 𝐴)) +𝑒 (vol*‘(𝑥 ∖ 𝐴))) ≤ (vol*‘𝑥))) | ||
| Theorem | volioof 45969 | The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) | ||
| Theorem | ovolsplit 45970 | The Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts, using addition for extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) ⇒ ⊢ (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) | ||
| Theorem | fvvolioof 45971 | The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))))) | ||
| Theorem | volioore 45972 | The measure of an open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) = if(𝐴 ≤ 𝐵, (𝐵 − 𝐴), 0)) | ||
| Theorem | fvvolicof 45973 | The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) | ||
| Theorem | voliooico 45974 | An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) | ||
| Theorem | ismbl4 45975* | The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl 25443, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥 ∩ 𝐴)) +𝑒 (vol*‘(𝑥 ∖ 𝐴))))) | ||
| Theorem | volioofmpt 45976* | ((vol ∘ (,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥)))))) | ||
| Theorem | volicoff 45977 | ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) | ||
| Theorem | voliooicof 45978 | The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ)) ⇒ ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹)) | ||
| Theorem | volicofmpt 45979* | ((vol ∘ [,)) ∘ 𝐹) expressed in maps-to notation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ*)) ⇒ ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))))) | ||
| Theorem | volicc 45980 | The Lebesgue measure of a closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,]𝐵)) = (𝐵 − 𝐴)) | ||
| Theorem | voliccico 45981 | A closed interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘(𝐴[,]𝐵)) = (vol‘(𝐴[,)𝐵))) | ||
| Theorem | mbfdmssre 45982 | The domain of a measurable function is a subset of the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| ⊢ (𝐹 ∈ MblFn → dom 𝐹 ⊆ ℝ) | ||
| Theorem | stoweidlem1 45983 | Lemma for stoweid 46045. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90; the key step uses Bernoulli's inequality bernneq 14154. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≤ 1) & ⊢ (𝜑 → 𝐷 ≤ 𝐴) ⇒ ⊢ (𝜑 → ((1 − (𝐴↑𝑁))↑(𝐾↑𝑁)) ≤ (1 / ((𝐾 · 𝐷)↑𝑁))) | ||
| Theorem | stoweidlem2 45984* | lemma for stoweid 46045: here we prove that the subalgebra of continuous functions, which contains constant functions, is closed under scaling. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ (𝐸 · (𝐹‘𝑡))) ∈ 𝐴) | ||
| Theorem | stoweidlem3 45985* | Lemma for stoweid 46045: if 𝐴 is positive and all 𝑀 terms of a finite product are larger than 𝐴, then the finite product is larger than 𝐴↑𝑀. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑖𝐹 & ⊢ Ⅎ𝑖𝜑 & ⊢ 𝑋 = seq1( · , 𝐹) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝐴 < (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) ⇒ ⊢ (𝜑 → (𝐴↑𝑀) < (𝑋‘𝑀)) | ||
| Theorem | stoweidlem4 45986* | Lemma for stoweid 46045: a class variable replaces a setvar variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝐵) ∈ 𝐴) | ||
| Theorem | stoweidlem5 45987* | There exists a δ as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 0 < δ < 1 , p >= δ on 𝑇 ∖ 𝑈. Here 𝐷 is used to represent δ in the paper and 𝑄 to represent 𝑇 ∖ 𝑈 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐷 = if(𝐶 ≤ (1 / 2), 𝐶, (1 / 2)) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑄 ⊆ 𝑇) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑡 ∈ 𝑄 𝐶 ≤ (𝑃‘𝑡)) ⇒ ⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ 𝑄 𝑑 ≤ (𝑃‘𝑡))) | ||
| Theorem | stoweidlem6 45988* | Lemma for stoweid 46045: two class variables replace two setvar variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡 𝑓 = 𝐹 & ⊢ Ⅎ𝑡 𝑔 = 𝐺 & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) · (𝐺‘𝑡))) ∈ 𝐴) | ||
| Theorem | stoweidlem7 45989* | This lemma is used to prove that qn as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 91, (at the top of page 91), is such that qn < ε on 𝑇 ∖ 𝑈, and qn > 1 - ε on 𝑉. Here it is proven that, for 𝑛 large enough, 1-(k*δ/2)^n > 1 - ε , and 1/(k*δ)^n < ε. The variable 𝐴 is used to represent (k*δ) in the paper, and 𝐵 is used to represent (k*δ/2). (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑖)) & ⊢ 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵↑𝑖)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 < 1) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ (1 / (𝐴↑𝑛)) < 𝐸)) | ||
| Theorem | stoweidlem8 45990* | Lemma for stoweid 46045: two class variables replace two setvar variables, for the sum of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ Ⅎ𝑡𝐹 & ⊢ Ⅎ𝑡𝐺 ⇒ ⊢ ((𝜑 ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝐹‘𝑡) + (𝐺‘𝑡))) ∈ 𝐴) | ||
| Theorem | stoweidlem9 45991* | Lemma for stoweid 46045: here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → 𝑇 = ∅) & ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 ∀𝑡 ∈ 𝑇 (abs‘((𝑔‘𝑡) − (𝐹‘𝑡))) < 𝐸) | ||
| Theorem | stoweidlem10 45992 | Lemma for stoweid 46045. This lemma is used by Lemma 1 in [BrosowskiDeutsh] p. 90, this lemma is an application of Bernoulli's inequality. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ≤ 1) → (1 − (𝑁 · 𝐴)) ≤ ((1 − 𝐴)↑𝑁)) | ||
| Theorem | stoweidlem11 45993* | This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92 (at the top of page 92): this lemma proves that g(t) < ( j + 1 / 3 ) * ε. Here 𝐸 is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑡 ∈ 𝑇) & ⊢ (𝜑 → 𝑗 ∈ (1...𝑁)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → (𝑋‘𝑖):𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → ((𝑋‘𝑖)‘𝑡) ≤ 1) & ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑗...𝑁)) → ((𝑋‘𝑖)‘𝑡) < (𝐸 / 𝑁)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐸 < (1 / 3)) ⇒ ⊢ (𝜑 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) < ((𝑗 + (1 / 3)) · 𝐸)) | ||
| Theorem | stoweidlem12 45994* | Lemma for stoweid 46045. This Lemma is used by other three Lemmas. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑄 = (𝑡 ∈ 𝑇 ↦ ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) & ⊢ (𝜑 → 𝑃:𝑇⟶ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑄‘𝑡) = ((1 − ((𝑃‘𝑡)↑𝑁))↑(𝐾↑𝑁))) | ||
| Theorem | stoweidlem13 45995 | Lemma for stoweid 46045. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in [BrosowskiDeutsh] p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑗 ∈ ℝ) & ⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋) & ⊢ (𝜑 → 𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸)) & ⊢ (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌) & ⊢ (𝜑 → 𝑌 < ((𝑗 + (1 / 3)) · 𝐸)) ⇒ ⊢ (𝜑 → (abs‘(𝑌 − 𝑋)) < (2 · 𝐸)) | ||
| Theorem | stoweidlem14 45996* | There exists a 𝑘 as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 𝑘 is an integer and 1 < k * δ < 2. 𝐷 is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝐴 = {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗} & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 < 1) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)) | ||
| Theorem | stoweidlem15 45997* | This lemma is used to prove the existence of a function 𝑝 as in Lemma 1 from [BrosowskiDeutsh] p. 90: 𝑝 is in the subalgebra, such that 0 ≤ p ≤ 1, p_(t0) = 0, and p > 0 on T - U. Here (𝐺‘𝐼) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} & ⊢ (𝜑 → 𝐺:(1...𝑀)⟶𝑄) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐼 ∈ (1...𝑀)) ∧ 𝑆 ∈ 𝑇) → (((𝐺‘𝐼)‘𝑆) ∈ ℝ ∧ 0 ≤ ((𝐺‘𝐼)‘𝑆) ∧ ((𝐺‘𝐼)‘𝑆) ≤ 1)) | ||
| Theorem | stoweidlem16 45998* | Lemma for stoweid 46045. The subset 𝑌 of functions in the algebra 𝐴, with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ 𝑌 = {ℎ ∈ 𝐴 ∣ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1)} & ⊢ 𝐻 = (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → 𝐻 ∈ 𝑌) | ||
| Theorem | stoweidlem17 45999* | This lemma proves that the function 𝑔 (as defined in [BrosowskiDeutsh] p. 91, at the end of page 91) belongs to the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝜑 & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋:(0...𝑁)⟶𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) & ⊢ (𝜑 → 𝐸 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) ⇒ ⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) | ||
| Theorem | stoweidlem18 46000* | This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| ⊢ Ⅎ𝑡𝐷 & ⊢ Ⅎ𝑡𝜑 & ⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ 1) & ⊢ 𝑇 = ∪ 𝐽 & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 = ∅) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |