![]() |
Metamath
Proof Explorer Theorem List (p. 460 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Statement | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | even3prm2 45901 | If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mogoldbblem 45902* | Lemma for mogoldbb 45967. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | perfectALTVlem1 45903 | Lemma for perfectALTV 45905. (Contributed by Mario Carneiro, 7-Jun-2016.) (Revised by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Odd ) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | perfectALTVlem2 45904 | Lemma for perfectALTV 45905. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Odd ) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | perfectALTV 45905* | The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) (Proof modification is discouraged.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
"In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem ... [which] states that if p is prime and a is coprime to p, then a^(p-1)-1 is divisible by p [see fermltl 16656]. For an integer a > 1, if a composite integer x divides a^(x-1)-1, then x is called a Fermat pseudoprime to base a. In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a. The false statement [see nfermltl2rev 45925] that all numbers that pass the Fermat primality test for base 2, are prime, is called the Chinese hypothesis.", see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime 45925, 29-May-2023. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cfppr 45906 | Extend class notation with the Fermat pseudoprimes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class FPPr | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-fppr 45907* | Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ ∧ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fppr 45908* | The set of Fermat pseudoprimes to the base 𝑁. (Contributed by AV, 29-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprmod 45909* | The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprel 45910 | A Fermat pseudoprime to the base 𝑁. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprbasnn 45911 | The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprnn 45912 | A Fermat pseudoprime to the base 𝑁 is a positive integer. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑋 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fppr2odd 45913 | A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 11t31e341 45914 | 341 is the product of 11 and 31. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (;11 · ;31) = ;;341 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 2exp340mod341 45915 | Eight to the eighth power modulo nine is one. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((2↑;;340) mod ;;341) = 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 341fppr2 45916 | 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ;;341 ∈ ( FPPr ‘2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 4fppr1 45917 | 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 4 ∈ ( FPPr ‘1) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 8exp8mod9 45918 | Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((8↑8) mod 9) = 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 9fppr8 45919 | 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 9 ∈ ( FPPr ‘8) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | dfwppr 45920 | Alternate definition of a weak pseudoprime 𝑋, which fulfils (𝑁↑𝑋)≡𝑁 (modulo 𝑋), see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime, 29-May-2023. (Contributed by AV, 31-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ) → (((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁↑𝑋) − 𝑁))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprwppr 45921 | A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprwpprb 45922 | An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | fpprel2 45923 | An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltl8rev 45924 | Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 45919) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltl2rev 45925 | Fermat's little theorem with base 2 reversed is not generally true: There is an integer 𝑝 (for example 341, see 341fppr2 45916) so that "𝑝 is prime" does not follow from 2↑𝑝≡2 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((2↑𝑝) mod 𝑝) = (2 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nfermltlrev 45926* | Fermat's little theorem reversed is not generally true: There are integers 𝑎 and 𝑝 so that "𝑝 is prime" does not follow from 𝑎↑𝑝≡𝑎 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Wikipedia ("Goldbach's conjecture", 20-Jul-2020,
https://en.wikipedia.org/wiki/Goldbach's_conjecture) "Goldbach's
conjecture ... states: Every even integer greater than 2 can be expressed as
the sum of two primes." "It is also known as strong, even or binary Goldbach
conjecture, to distinguish it from a weaker conjecture, known ... as the
_Goldbach's weak conjecture_, the _odd Goldbach conjecture_, or the _ternary
Goldbach conjecture_. This weak conjecture asserts that all odd numbers
greater than 7 are the sum of three odd primes.". In the following, the
terms "binary Goldbach conjecture" resp. "ternary Goldbach conjecture" will
be used (following the terminology used in [Helfgott] p. 2), because there
are a strong and a weak version of the ternary Goldbach conjecture. The term
_Goldbach partition_ is used for a sum of two resp. three (odd) primes
resulting in an even resp. odd number without further specialization.
Summary/glossary:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbe 45927 | Extend the definition of a class to include the set of even numbers which have a Goldbach partition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbow 45928 | Extend the definition of a class to include the set of odd numbers which can be written as a sum of three primes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachOddW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgbo 45929 | Extend the definition of a class to include the set of odd numbers which can be written as a sum of three odd primes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbe 45930* | Define the set of (even) Goldbach numbers, which are positive even integers that can be expressed as the sum of two odd primes. By this definition, the binary Goldbach conjecture can be expressed as ∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ). (Contributed by AV, 14-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbow 45931* | Define the set of weak odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three primes. By this definition, the weak ternary Goldbach conjecture can be expressed as ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ). (Contributed by AV, 14-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition | df-gbo 45932* | Define the set of (strong) odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three odd primes. By this definition, the strong ternary Goldbach conjecture can be expressed as ∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ). (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbe 45933* | The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbow 45934* | The predicate "is a weak odd Goldbach number". A weak odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as a sum of three primes. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | isgbo 45935* | The predicate "is an odd Goldbach number". An odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as sum of three odd primes. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbeeven 45936 | An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowodd 45937 | A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbogbow 45938 | A (strong) odd Goldbach number is a weak Goldbach number. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gboodd 45939 | An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbepos 45940 | Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowpos 45941 | Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbopos 45942 | Any odd Goldbach number is positive. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbegt5 45943 | Any even Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 5 < 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowgt5 45944 | Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 5 < 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbowge7 45945 | Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow 45954, this bound is strict. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gboge9 45946 | Any odd Goldbach number is greater than or equal to 9. Because of 9gbo 45956, this bound is strict. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbege6 45947 | Any even Goldbach number is greater than or equal to 6. Because of 6gbe 45953, this bound is strict. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑍 ∈ GoldbachEven → 6 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart6 45948 | The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 6 = (3 + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart7 45949 | The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 7 = ((2 + 2) + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart8 45950 | The Goldbach partition of 8. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 8 = (3 + 5) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart9 45951 | The (strong) Goldbach partition of 9. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 9 = ((3 + 3) + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | gbpart11 45952 | The (strong) Goldbach partition of 11. (Contributed by AV, 29-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ;11 = ((3 + 3) + 5) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 6gbe 45953 | 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 6 ∈ GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 7gbow 45954 | 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 7 ∈ GoldbachOddW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 8gbe 45955 | 8 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 8 ∈ GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 9gbo 45956 | 9 is an odd Goldbach number. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 9 ∈ GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | 11gbo 45957 | 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ;11 ∈ GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | stgoldbwt 45958 | If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbwt 45959* | If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbst 45960* | If the strong binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbaltlem1 45961 | Lemma 1 for sbgoldbalt 45963: If an even number greater than 4 is the sum of two primes, one of the prime summands must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbaltlem2 45962 | Lemma 2 for sbgoldbalt 45963: If an even number greater than 4 is the sum of two primes, the primes must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbalt 45963* | An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbb 45964* | If the strong binary Goldbach conjecture is valid, the binary Goldbach conjecture is valid. (Contributed by AV, 23-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sgoldbeven3prm 45965* | If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since (𝑁 − 2) is even iff 𝑁 is even, there would be primes 𝑝 and 𝑞 with (𝑁 − 2) = (𝑝 + 𝑞), and therefore 𝑁 = ((𝑝 + 𝑞) + 2). (Contributed by AV, 24-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbm 45966* | If the strong binary Goldbach conjecture is valid, the modern version of the original formulation of the Goldbach conjecture also holds: Every integer greater than 5 can be expressed as the sum of three primes. (Contributed by AV, 24-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | mogoldbb 45967* | If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbmb 45968* | The strong binary Goldbach conjecture and the modern version of the original formulation of the Goldbach conjecture are equivalent. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | sbgoldbo 45969* | If the strong binary Goldbach conjecture is valid, the original formulation of the Goldbach conjecture also holds: Every integer greater than 2 can be expressed as the sum of three "primes" with regarding 1 to be a prime (as Goldbach did). Original text: "Es scheint wenigstens, dass eine jede Zahl, die groesser ist als 2, ein aggregatum trium numerorum primorum sey." (Goldbach, 1742). (Contributed by AV, 25-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑃 = ({1} ∪ ℙ) ⇒ ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘3)∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum3primes4 45970* | 4 is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primes4 45971* | 4 is the sum of at most 4 (actually 2) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum3primesprm 45972* | Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesprm 45973* | Every prime is "the sum of at most 4" (actually one - the prime itself) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum3primesgbe 45974* | Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesgbe 45975* | Any even Goldbach number is the sum of at most 4 (actually 2) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum3primesle9 45976* | Every integer greater than 1 and less than or equal to 8 is the sum of at most 3 primes. (Contributed by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesle9 45977* | Every integer greater than 1 and less than or equal to 8 is the sum of at most 4 primes. (Contributed by AV, 24-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesodd 45978* | If the (weak) ternary Goldbach conjecture is valid, then every odd integer greater than 5 is the sum of 3 primes. (Contributed by AV, 2-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘6) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesoddALTV 45979* | If the (strong) ternary Goldbach conjecture is valid, then every odd integer greater than 7 is the sum of 3 primes. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | evengpop3 45980* | If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of an odd Goldbach number and 3. (Contributed by AV, 24-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | evengpoap3 45981* | If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020.) (Proof shortened by AV, 15-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘;12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primeseven 45982* | If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of 4 primes. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘9) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | nnsum4primesevenALTV 45983* | If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of 4 primes. (Contributed by AV, 27-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘;12) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | wtgoldbnnsum4prm 45984* | If the (weak) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes, showing that Schnirelmann's constant would be less than or equal to 4. See corollary 1.1 in [Helfgott] p. 4. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | stgoldbnnsum4prm 45985* | If the (strong) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes. (Contributed by AV, 27-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbnnsum3prm 45986* | If the binary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 3 primes, showing that Schnirelmann's constant would be equal to 3. (Contributed by AV, 2-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbtbndlem1 45987 | Lemma 1 for bgoldbtbnd 45991: the odd numbers between 7 and 13 (exclusive) are odd Goldbach numbers. (Contributed by AV, 29-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Odd ∧ 7 < 𝑁 ∧ 𝑁 ∈ (7[,);13)) → 𝑁 ∈ GoldbachOdd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbtbndlem2 45988* | Lemma 2 for bgoldbtbnd 45991. (Contributed by AV, 1-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ 𝑆 = (𝑋 − (𝐹‘(𝐼 − 1))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹‘𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbtbndlem3 45989* | Lemma 3 for bgoldbtbnd 45991. (Contributed by AV, 1-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) & ⊢ 𝑆 = (𝑋 − (𝐹‘𝐼)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbtbndlem4 45990* | Lemma 4 for bgoldbtbnd 45991. (Contributed by AV, 1-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹‘𝐼)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbtbnd 45991* | If the binary Goldbach conjecture is valid up to an integer 𝑁, and there is a series ("ladder") of primes with a difference of at most 𝑁 up to an integer 𝑀, then the strong ternary Goldbach conjecture is valid up to 𝑀, see section 1.2.2 in [Helfgott] p. 4 with N = 4 x 10^18, taken from [OeSilva], and M = 8.875 x 10^30. (Contributed by AV, 1-Aug-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ Odd ((7 < 𝑛 ∧ 𝑛 < 𝑀) → 𝑛 ∈ GoldbachOdd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Axiom | ax-bgbltosilva 45992 | The binary Goldbach conjecture is valid for all even numbers less than or equal to 4x10^18, see section 2 in [OeSilva] p. 2042. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ (4 · (;10↑;18))) → 𝑁 ∈ GoldbachEven ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Axiom | ax-tgoldbachgt 45993* | Temporary duplicate of tgoldbachgt 33276, provided as "axiom" as long as this theorem is in the mathbox of Thierry Arnoux: Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐺 = {𝑧 ∈ 𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ⇒ ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tgoldbachgtALTV 45994* | Variant of Thierry Arnoux's tgoldbachgt 33276 using the symbols Odd and GoldbachOdd: The ternary Goldbach conjecture is valid for large odd numbers (i.e. for all odd numbers greater than a fixed 𝑚). This is proven by Helfgott (see section 7.4 in [Helfgott] p. 70) for 𝑚 = 10^27. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 15-Jan-2022.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ Odd (𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | bgoldbachlt 45995* | The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big 𝑚). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva 45992. (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑚 ∈ ℕ ((4 · (;10↑;18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Axiom | ax-hgprmladder 45996 | There is a partition ("ladder") of primes from 7 to 8.8 x 10^30 with parts ("rungs") having lengths of at least 4 and at most N - 4, see section 1.2.2 in [Helfgott] p. 4. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑑 ∈ (ℤ≥‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = ;13 ∧ (𝑓‘𝑑) = (;89 · (;10↑;29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)) < ((4 · (;10↑;18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tgblthelfgott 45997 | The ternary Goldbach conjecture is valid for all odd numbers less than 8.8 x 10^30 (actually 8.875694 x 10^30, see section 1.2.2 in [Helfgott] p. 4, using bgoldbachlt 45995, ax-hgprmladder 45996 and bgoldbtbnd 45991. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ((𝑁 ∈ Odd ∧ 7 < 𝑁 ∧ 𝑁 < (;88 · (;10↑;29))) → 𝑁 ∈ GoldbachOdd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tgoldbachlt 45998* | The ternary Goldbach conjecture is valid for small odd numbers (i.e. for all odd numbers less than a fixed big 𝑚 greater than 8 x 10^30). This is verified for m = 8.875694 x 10^30 by Helfgott, see tgblthelfgott 45997. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∃𝑚 ∈ ℕ ((8 · (;10↑;30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theorem | tgoldbach 45999 | The ternary Goldbach conjecture is valid. Main theorem in [Helfgott] p. 2. This follows from tgoldbachlt 45998 and ax-tgoldbachgt 45993. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 9-Sep-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
⊢ ∀𝑛 ∈ Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In the following, a general definition of the isomorphy relation for graphs and specializations for simple hypergraphs (isomushgr 46008) and simple pseudographs (isomuspgr 46016) are provided. The latter corresponds to the definition in [Bollobas] p. 3). It is shown that the isomorphy relation for graphs is an equivalence relation (isomgrref 46017, isomgrsym 46018, isomgrtr 46021). Fianlly, isomorphic graphs with different representations are studied (strisomgrop 46022, ushrisomgr 46023). Maybe more important than graph isomorphy is the notion of graph isomorphism, which can be defined as in df-grisom 46002. Then 𝐴 IsomGr 𝐵 ↔ ∃𝑓𝑓 ∈ (𝐴 GrIsom 𝐵) resp. 𝐴 IsomGr 𝐵 ↔ (𝐴 GrIsom 𝐵) ≠ ∅. Notice that there can be multiple isomorphisms between two graphs (let 〈{𝐴, 𝐵}, {{𝐴, 𝐵}}〉 and 〈{{𝑀, 𝑁}, {{𝑀, 𝑁}}〉 be two graphs with two vertices and one edge, then 𝐴 ↦ 𝑀, 𝐵 ↦ 𝑁 and 𝐴 ↦ 𝑁, 𝐵 ↦ 𝑀 are two different isomorphisms between these graphs). Another approach could be to define a category of graphs (there are maybe multiple ones), where graph morphisms are couples consisting in a function on vertices and a function on edges with required compatibilities, as used in the definition of GrIsom. And then, a graph isomorphism is defined as an isomorphism in the category of graphs (something like "GraphIsom = ( Iso ` GraphCat )" ). Then general category theory theorems could be used, e.g., to show that graph isomorphy is an equivalence relation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syntax | cgrisom 46000 | Extend class notation to include the graph ispmorphisms. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
class GrIsom |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |