![]() |
Metamath
Proof Explorer Theorem List (p. 460 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 2pwp1prm 45901* | For ((2↑𝑘) + 1) to be prime, 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.) |
⊢ ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) | ||
Theorem | 2pwp1prmfmtno 45902* | Every prime number of the form ((2↑𝑘) + 1) must be a Fermat number. (Contributed by AV, 7-Aug-2021.) |
⊢ ((𝐾 ∈ ℕ ∧ 𝑃 = ((2↑𝐾) + 1) ∧ 𝑃 ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝑃 = (FermatNo‘𝑛)) | ||
"In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2^n-1 for some integer n. They are named after Marin Mersenne ... If n is a composite number then so is 2^n-1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2^p-1 for some prime p.", see Wikipedia "Mersenne prime", 16-Aug-2021, https://en.wikipedia.org/wiki/Mersenne_prime. See also definition in [ApostolNT] p. 4. This means that if Mn = 2^n-1 is prime, than n must be prime, too, see mersenne 26612. The reverse direction is not generally valid: If p is prime, then Mp = 2^p-1 needs not be prime, e.g. M11 = 2047 = 23 x 89, see m11nprm 45913. This is an example of sgprmdvdsmersenne 45916, stating that if p with p = 3 modulo 4 (here 11) and q=2p+1 (here 23) are prime, then q divides Mp. "In number theory, a prime number p is a Sophie Germain prime if 2p+1 is also prime. The number 2p+1 associated with a Sophie Germain prime is called a safe prime.", see Wikipedia "Safe and Sophie Germain primes", 21-Aug-2021, https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes 45916. Hence, 11 is a Sophie Germain prime and 2x11+1=23 is its associated safe prime. By sfprmdvdsmersenne 45915, it is shown that if a safe prime q is congruent to 7 modulo 8, then it is a divisor of the Mersenne number with its matching Sophie Germain prime as exponent. The main result of this section, however, is the formal proof of a theorem of S. Ligh and L. Neal in "A note on Mersenne numbers", see lighneal 45923. | ||
Theorem | m2prm 45903 | The second Mersenne number M2 = 3 is a prime number. (Contributed by AV, 16-Aug-2021.) |
⊢ ((2↑2) − 1) ∈ ℙ | ||
Theorem | m3prm 45904 | The third Mersenne number M3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021.) |
⊢ ((2↑3) − 1) ∈ ℙ | ||
Theorem | flsqrt 45905 | A condition equivalent to the floor of a square root. (Contributed by AV, 17-Aug-2021.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℕ0) → ((⌊‘(√‘𝐴)) = 𝐵 ↔ ((𝐵↑2) ≤ 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2)))) | ||
Theorem | flsqrt5 45906 | The floor of the square root of a nonnegative number is 5 iff the number is between 25 and 35. (Contributed by AV, 17-Aug-2021.) |
⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) → ((;25 ≤ 𝑋 ∧ 𝑋 < ;36) ↔ (⌊‘(√‘𝑋)) = 5)) | ||
Theorem | 3ndvds4 45907 | 3 does not divide 4. (Contributed by AV, 18-Aug-2021.) |
⊢ ¬ 3 ∥ 4 | ||
Theorem | 139prmALT 45908 | 139 is a prime number. In contrast to 139prm 17007, the proof of this theorem uses 3dvds2dec 16226 for checking the divisibility by 3. Although the proof using 3dvds2dec 16226 is longer (regarding size: 1849 characters compared with 1809 for 139prm 17007), the number of essential steps is smaller (301 compared with 327 for 139prm 17007). (Contributed by Mario Carneiro, 19-Feb-2014.) (Revised by AV, 18-Aug-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ;;139 ∈ ℙ | ||
Theorem | 31prm 45909 | 31 is a prime number. In contrast to 37prm 17004, the proof of this theorem is not based on the "blanket" prmlem2 17003, but on isprm7 16595. Although the checks for non-divisibility by the primes 7 to 23 are not needed, the proof is much longer (regarding size) than the proof of 37prm 17004 (1810 characters compared with 1213 for 37prm 17004). The number of essential steps, however, is much smaller (138 compared with 213 for 37prm 17004). (Contributed by AV, 17-Aug-2021.) (Proof modification is discouraged.) |
⊢ ;31 ∈ ℙ | ||
Theorem | m5prm 45910 | The fifth Mersenne number M5 = 31 is a prime number. (Contributed by AV, 17-Aug-2021.) |
⊢ ((2↑5) − 1) ∈ ℙ | ||
Theorem | 127prm 45911 | 127 is a prime number. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 16-Sep-2021.) |
⊢ ;;127 ∈ ℙ | ||
Theorem | m7prm 45912 | The seventh Mersenne number M7 = 127 is a prime number. (Contributed by AV, 18-Aug-2021.) |
⊢ ((2↑7) − 1) ∈ ℙ | ||
Theorem | m11nprm 45913 | The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
⊢ ((2↑;11) − 1) = (;89 · ;23) | ||
Theorem | mod42tp1mod8 45914 | If a number is 3 modulo 4, twice the number plus 1 is 7 modulo 8. (Contributed by AV, 19-Aug-2021.) |
⊢ ((𝑁 ∈ ℤ ∧ (𝑁 mod 4) = 3) → (((2 · 𝑁) + 1) mod 8) = 7) | ||
Theorem | sfprmdvdsmersenne 45915 | If 𝑄 is a safe prime (i.e. 𝑄 = ((2 · 𝑃) + 1) for a prime 𝑃) with 𝑄≡7 (mod 8), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
⊢ ((𝑃 ∈ ℙ ∧ (𝑄 ∈ ℙ ∧ (𝑄 mod 8) = 7 ∧ 𝑄 = ((2 · 𝑃) + 1))) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
Theorem | sgprmdvdsmersenne 45916 | If 𝑃 is a Sophie Germain prime (i.e. 𝑄 = ((2 · 𝑃) + 1) is also prime) with 𝑃≡3 (mod 4), then 𝑄 divides the 𝑃-th Mersenne number MP. (Contributed by AV, 20-Aug-2021.) |
⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 3) ∧ (𝑄 = ((2 · 𝑃) + 1) ∧ 𝑄 ∈ ℙ)) → 𝑄 ∥ ((2↑𝑃) − 1)) | ||
Theorem | lighneallem1 45917 | Lemma 1 for lighneal 45923. (Contributed by AV, 11-Aug-2021.) |
⊢ ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃↑𝑀)) | ||
Theorem | lighneallem2 45918 | Lemma 2 for lighneal 45923. (Contributed by AV, 13-Aug-2021.) |
⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
Theorem | lighneallem3 45919 | Lemma 3 for lighneal 45923. (Contributed by AV, 11-Aug-2021.) |
⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
Theorem | lighneallem4a 45920 | Lemma 1 for lighneallem4 45922. (Contributed by AV, 16-Aug-2021.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘3) ∧ 𝑆 = (((𝐴↑𝑀) + 1) / (𝐴 + 1))) → 2 ≤ 𝑆) | ||
Theorem | lighneallem4b 45921* | Lemma 2 for lighneallem4 45922. (Contributed by AV, 16-Aug-2021.) |
⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ (ℤ≥‘2) ∧ ¬ 2 ∥ 𝑀) → Σ𝑘 ∈ (0...(𝑀 − 1))((-1↑𝑘) · (𝐴↑𝑘)) ∈ (ℤ≥‘2)) | ||
Theorem | lighneallem4 45922 | Lemma 3 for lighneal 45923. (Contributed by AV, 16-Aug-2021.) |
⊢ (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → 𝑀 = 1) | ||
Theorem | lighneal 45923 | If a power of a prime 𝑃 (i.e. 𝑃↑𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 26612 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.) |
⊢ (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃↑𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ)) | ||
Theorem | modexp2m1d 45924 | The square of an integer which is -1 modulo a number greater than 1 is 1 modulo the same modulus. (Contributed by AV, 5-Jul-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 1 < 𝐸) & ⊢ (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸)) ⇒ ⊢ (𝜑 → ((𝐴↑2) mod 𝐸) = 1) | ||
Theorem | proththdlem 45925 | Lemma for proththd 45926. (Contributed by AV, 4-Jul-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) ⇒ ⊢ (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ)) | ||
Theorem | proththd 45926* | Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 16789), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 = ((𝐾 · (2↑𝑁)) + 1)) & ⊢ (𝜑 → 𝐾 < (2↑𝑁)) & ⊢ (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ℙ) | ||
Theorem | 5tcu2e40 45927 | 5 times the cube of 2 is 40. (Contributed by AV, 4-Jul-2020.) |
⊢ (5 · (2↑3)) = ;40 | ||
Theorem | 3exp4mod41 45928 | 3 to the fourth power is -1 modulo 41. (Contributed by AV, 5-Jul-2020.) |
⊢ ((3↑4) mod ;41) = (-1 mod ;41) | ||
Theorem | 41prothprmlem1 45929 | Lemma 1 for 41prothprm 45931. (Contributed by AV, 4-Jul-2020.) |
⊢ 𝑃 = ;41 ⇒ ⊢ ((𝑃 − 1) / 2) = ;20 | ||
Theorem | 41prothprmlem2 45930 | Lemma 2 for 41prothprm 45931. (Contributed by AV, 5-Jul-2020.) |
⊢ 𝑃 = ;41 ⇒ ⊢ ((3↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) | ||
Theorem | 41prothprm 45931 | 41 is a Proth prime. (Contributed by AV, 5-Jul-2020.) |
⊢ 𝑃 = ;41 ⇒ ⊢ (𝑃 = ((5 · (2↑3)) + 1) ∧ 𝑃 ∈ ℙ) | ||
Theorem | quad1 45932* | A condition for a quadratic equation with complex coefficients to have (exactly) one complex solution. (Contributed by AV, 23-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℂ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
Theorem | requad01 45933* | A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 0 ≤ 𝐷)) | ||
Theorem | requad1 45934* | A condition for a quadratic equation with real coefficients to have (exactly) one real solution. (Contributed by AV, 26-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ ℝ ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0 ↔ 𝐷 = 0)) | ||
Theorem | requad2 45935* | A condition for a quadratic equation with real coefficients to have (exactly) two different real solutions. (Contributed by AV, 28-Jan-2023.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (∃!𝑝 ∈ 𝒫 ℝ((♯‘𝑝) = 2 ∧ ∀𝑥 ∈ 𝑝 ((𝐴 · (𝑥↑2)) + ((𝐵 · 𝑥) + 𝐶)) = 0) ↔ 0 < 𝐷)) | ||
Even and odd numbers can be characterized in many different ways. In the following, the definition of even and odd numbers is based on the fact that dividing an even number (resp. an odd number increased by 1) by 2 is an integer, see df-even 45938 and df-odd 45939. Alternate definitions resp. characterizations are provided in dfeven2 45961, dfeven3 45970, dfeven4 45950 and in dfodd2 45948, dfodd3 45962, dfodd4 45971, dfodd5 45972, dfodd6 45949. Each characterization can be useful (and used) in an appropriate context, e.g. dfodd6 45949 in opoeALTV 45995 and dfodd3 45962 in oddprmALTV 45999. Having a fixed definition for even and odd numbers, and alternate characterizations as theorems, advanced theorems about even and/or odd numbers can be expressed more explicitly, and the appropriate characterization can be chosen for their proof, which may become clearer and sometimes also shorter (see, for example, divgcdoddALTV 45994 and divgcdodd 16597). | ||
Syntax | ceven 45936 | Extend the definition of a class to include the set of even numbers. |
class Even | ||
Syntax | codd 45937 | Extend the definition of a class to include the set of odd numbers. |
class Odd | ||
Definition | df-even 45938 | Define the set of even numbers. (Contributed by AV, 14-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | ||
Definition | df-odd 45939 | Define the set of odd numbers. (Contributed by AV, 14-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | ||
Theorem | iseven 45940 | The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | ||
Theorem | isodd 45941 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | ||
Theorem | evenz 45942 | An even number is an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Even → 𝑍 ∈ ℤ) | ||
Theorem | oddz 45943 | An odd number is an integer. (Contributed by AV, 14-Jun-2020.) |
⊢ (𝑍 ∈ Odd → 𝑍 ∈ ℤ) | ||
Theorem | evendiv2z 45944 | The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) | ||
Theorem | oddp1div2z 45945 | The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ) | ||
Theorem | oddm1div2z 45946 | The result of dividing an odd number decreased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ((𝑍 − 1) / 2) ∈ ℤ) | ||
Theorem | isodd2 45947 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 − 1) / 2) ∈ ℤ)) | ||
Theorem | dfodd2 45948 | Alternate definition for odd numbers. (Contributed by AV, 15-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 − 1) / 2) ∈ ℤ} | ||
Theorem | dfodd6 45949* | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = ((2 · 𝑖) + 1)} | ||
Theorem | dfeven4 45950* | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} | ||
Theorem | evenm1odd 45951 | The predecessor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Even → (𝑍 − 1) ∈ Odd ) | ||
Theorem | evenp1odd 45952 | The successor of an even number is odd. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Even → (𝑍 + 1) ∈ Odd ) | ||
Theorem | oddp1eveni 45953 | The successor of an odd number is even. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Odd → (𝑍 + 1) ∈ Even ) | ||
Theorem | oddm1eveni 45954 | The predecessor of an odd number is even. (Contributed by AV, 6-Jul-2020.) |
⊢ (𝑍 ∈ Odd → (𝑍 − 1) ∈ Even ) | ||
Theorem | evennodd 45955 | An even number is not an odd number. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Even → ¬ 𝑍 ∈ Odd ) | ||
Theorem | oddneven 45956 | An odd number is not an even number. (Contributed by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ¬ 𝑍 ∈ Even ) | ||
Theorem | enege 45957 | The negative of an even number is even. (Contributed by AV, 20-Jun-2020.) |
⊢ (𝐴 ∈ Even → -𝐴 ∈ Even ) | ||
Theorem | onego 45958 | The negative of an odd number is odd. (Contributed by AV, 20-Jun-2020.) |
⊢ (𝐴 ∈ Odd → -𝐴 ∈ Odd ) | ||
Theorem | m1expevenALTV 45959 | Exponentiation of -1 by an even power. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 6-Jul-2020.) |
⊢ (𝑁 ∈ Even → (-1↑𝑁) = 1) | ||
Theorem | m1expoddALTV 45960 | Exponentiation of -1 by an odd power. (Contributed by AV, 6-Jul-2020.) |
⊢ (𝑁 ∈ Odd → (-1↑𝑁) = -1) | ||
Theorem | dfeven2 45961 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧} | ||
Theorem | dfodd3 45962 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} | ||
Theorem | iseven2 45963 | The predicate "is an even number". An even number is an integer which is divisible by 2. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ 2 ∥ 𝑍)) | ||
Theorem | isodd3 45964 | The predicate "is an odd number". An odd number is an integer which is not divisible by 2. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍)) | ||
Theorem | 2dvdseven 45965 | 2 divides an even number. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Even → 2 ∥ 𝑍) | ||
Theorem | m2even 45966 | A multiple of 2 is an even number. (Contributed by AV, 5-Jun-2023.) |
⊢ (𝑍 ∈ ℤ → (2 · 𝑍) ∈ Even ) | ||
Theorem | 2ndvdsodd 45967 | 2 does not divide an odd number. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd → ¬ 2 ∥ 𝑍) | ||
Theorem | 2dvdsoddp1 45968 | 2 divides an odd number increased by 1. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 + 1)) | ||
Theorem | 2dvdsoddm1 45969 | 2 divides an odd number decreased by 1. (Contributed by AV, 18-Jun-2020.) |
⊢ (𝑍 ∈ Odd → 2 ∥ (𝑍 − 1)) | ||
Theorem | dfeven3 45970 | Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 0} | ||
Theorem | dfodd4 45971 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) = 1} | ||
Theorem | dfodd5 45972 | Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ (𝑧 mod 2) ≠ 0} | ||
Theorem | zefldiv2ALTV 45973 | The floor of an even number divided by 2 is equal to the even number divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
⊢ (𝑁 ∈ Even → (⌊‘(𝑁 / 2)) = (𝑁 / 2)) | ||
Theorem | zofldiv2ALTV 45974 | The floor of an odd numer divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) | ||
Theorem | oddflALTV 45975 | Odd number representation by using the floor function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 18-Jun-2020.) |
⊢ (𝐾 ∈ Odd → 𝐾 = ((2 · (⌊‘(𝐾 / 2))) + 1)) | ||
Theorem | iseven5 45976 | The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) |
⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 2)) | ||
Theorem | isodd7 45977 | The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) |
⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ (2 gcd 𝑍) = 1)) | ||
Theorem | dfeven5 45978 | Alternate definition for even numbers. (Contributed by AV, 1-Jul-2020.) |
⊢ Even = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 2} | ||
Theorem | dfodd7 45979 | Alternate definition for odd numbers. (Contributed by AV, 1-Jul-2020.) |
⊢ Odd = {𝑧 ∈ ℤ ∣ (2 gcd 𝑧) = 1} | ||
Theorem | gcd2odd1 45980 | The greatest common divisor of an odd number and 2 is 1, i.e., 2 and any odd number are coprime. Remark: The proof using dfodd7 45979 is longer (see proof in comment)! (Contributed by AV, 5-Jun-2023.) |
⊢ (𝑍 ∈ Odd → (𝑍 gcd 2) = 1) | ||
Theorem | zneoALTV 45981 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Revised by AV, 16-Jun-2020.) |
⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → 𝐴 ≠ 𝐵) | ||
Theorem | zeoALTV 45982 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ∨ 𝑍 ∈ Odd )) | ||
Theorem | zeo2ALTV 45983 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) (Revised by AV, 16-Jun-2020.) |
⊢ (𝑍 ∈ ℤ → (𝑍 ∈ Even ↔ ¬ 𝑍 ∈ Odd )) | ||
Theorem | nneoALTV 45984 | A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd )) | ||
Theorem | nneoiALTV 45985 | A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) (Revised by AV, 19-Jun-2020.) |
⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑁 ∈ Even ↔ ¬ 𝑁 ∈ Odd ) | ||
Theorem | odd2np1ALTV 45986* | An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | ||
Theorem | oddm1evenALTV 45987 | An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 − 1) ∈ Even )) | ||
Theorem | oddp1evenALTV 45988 | An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ ℤ → (𝑁 ∈ Odd ↔ (𝑁 + 1) ∈ Even )) | ||
Theorem | oexpnegALTV 45989 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Revised by AV, 19-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
Theorem | oexpnegnz 45990 | The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
Theorem | bits0ALTV 45991 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) | ||
Theorem | bits0eALTV 45992 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ Even → ¬ 0 ∈ (bits‘𝑁)) | ||
Theorem | bits0oALTV 45993 | The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
⊢ (𝑁 ∈ Odd → 0 ∈ (bits‘𝑁)) | ||
Theorem | divgcdoddALTV 45994 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd )) | ||
Theorem | opoeALTV 45995 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even ) | ||
Theorem | opeoALTV 45996 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd ) | ||
Theorem | omoeALTV 45997 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Even ) | ||
Theorem | omeoALTV 45998 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) |
⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Odd ) | ||
Theorem | oddprmALTV 45999 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) | ||
Theorem | 0evenALTV 46000 | 0 is an even number. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 17-Jun-2020.) |
⊢ 0 ∈ Even |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |