HomeHome Metamath Proof Explorer
Theorem List (p. 460 of 462)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28953)
  Hilbert Space Explorer  Hilbert Space Explorer
(28954-30476)
  Users' Mathboxes  Users' Mathboxes
(30477-46123)
 

Theorem List for Metamath Proof Explorer - 45901-46000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtoplatglb0 45901 The empty intersection in a topology is realized by the base set. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   𝐺 = (glb‘𝐼)       (𝜑 → (𝐺‘∅) = 𝐽)
 
Theoremtoplatlub 45902 Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝑆𝐽)    &   𝑈 = (lub‘𝐼)       (𝜑 → (𝑈𝑆) = 𝑆)
 
Theoremtoplatglb 45903 Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝑆𝐽)    &   𝐺 = (glb‘𝐼)    &   (𝜑𝑆 ≠ ∅)       (𝜑 → (𝐺𝑆) = ((int‘𝐽)‘ 𝑆))
 
Theoremtoplatjoin 45904 Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝐴𝐽)    &   (𝜑𝐵𝐽)    &    = (join‘𝐼)       (𝜑 → (𝐴 𝐵) = (𝐴𝐵))
 
Theoremtoplatmeet 45905 Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝐴𝐽)    &   (𝜑𝐵𝐽)    &    = (meet‘𝐼)       (𝜑 → (𝐴 𝐵) = (𝐴𝐵))
 
Theoremtopdlat 45906 A topology is a distributive lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)       (𝐽 ∈ Top → 𝐼 ∈ DLat)
 
20.42.12  Categories
 
20.42.12.1  Categories
 
Theoremcatprslem 45907* Lemma for catprs 45908. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
 
Theoremcatprs 45908* A preorder can be extracted from a category. See catprs2 45909 for more details. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   (𝜑𝐶 ∈ Cat)       ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
 
Theoremcatprs2 45909* A category equipped with the induced preorder, where an object 𝑥 is defined to be "less than or equal to" 𝑦 iff there is a morphism from 𝑥 to 𝑦, is a preordered set, or a proset. The category might not be thin. See catprsc 45910 and catprsc2 45911 for constructions satisfying the hypothesis "catprs.1". See catprs 45908 for a more primitive version. See prsthinc 45951 for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝑥𝐻𝑦) ≠ ∅))    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   (𝜑𝐶 ∈ Cat)    &   (𝜑 = (le‘𝐶))       (𝜑𝐶 ∈ Proset )
 
Theoremcatprsc 45910* A construction of the preorder induced by a category. See catprs2 45909 for details. See also catprsc2 45911 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵 ∧ (𝑥𝐻𝑦) ≠ ∅)})       (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
 
Theoremcatprsc2 45911* An alternate construction of the preorder induced by a category. See catprs2 45909 for details. See also catprsc 45910 for a different construction. The two constructions are different because df-cat 17125 does not require the domain of 𝐻 to be 𝐵 × 𝐵. (Contributed by Zhi Wang, 23-Sep-2024.)
(𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐻𝑦) ≠ ∅})       (𝜑 → ∀𝑧𝐵𝑤𝐵 (𝑧 𝑤 ↔ (𝑧𝐻𝑤) ≠ ∅))
 
Theoremendmndlem 45912 A diagonal hom-set in a category equipped with the restriction of the composition has a structure of monoid. See also df-mndtc 45979 for converting a monoid to a category. Lemma for bj-endmnd 35172. (Contributed by Zhi Wang, 25-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    · = (comp‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   (𝜑 → (𝑋𝐻𝑋) = (Base‘𝑀))    &   (𝜑 → (⟨𝑋, 𝑋· 𝑋) = (+g𝑀))       (𝜑𝑀 ∈ Mnd)
 
20.42.12.2  Monomorphisms and epimorphisms
 
Theoremidmon 45913 An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   𝑀 = (Mono‘𝐶)       (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))
 
Theoremidepi 45914 An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝑋𝐵)    &   𝐸 = (Epi‘𝐶)       (𝜑 → ( 1𝑋) ∈ (𝑋𝐸𝑋))
 
20.42.12.3  Functors
 
Theoremfuncf2lem 45915* A utility theorem for proving equivalence of "is a functor". (Contributed by Zhi Wang, 1-Oct-2024.)
(𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝐽(𝐹𝑦))))
 
20.42.13  Examples of categories
 
20.42.13.1  Thin categories
 
Syntaxcthinc 45916 Extend class notation with the class of thin categories.
class ThinCat
 
Definitiondf-thinc 45917* Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of [Adamek] p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024.)
ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)}
 
Theoremisthinc 45918* The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
 
Theoremisthinc2 45919* A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o))
 
Theoremisthinc3 45920* A thin category is a category in which, given a pair of objects 𝑥 and 𝑦 and any two morphisms 𝑓, 𝑔 from 𝑥 to 𝑦, the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑥𝐻𝑦)𝑓 = 𝑔))
 
Theoremthincc 45921 A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝐶 ∈ ThinCat → 𝐶 ∈ Cat)
 
Theoremthinccd 45922 A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)       (𝜑𝐶 ∈ Cat)
 
Theoremthincssc 45923 A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.)
ThinCat ⊆ Cat
 
Theoremisthincd2lem1 45924* Lemma for isthincd2 45935 and thincmo2 45925. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑋𝐻𝑌))    &   (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))       (𝜑𝐹 = 𝐺)
 
Theoremthincmo2 45925 Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑋𝐻𝑌))    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ ThinCat)       (𝜑𝐹 = 𝐺)
 
Theoremthincmo 45926* There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
 
TheoremthincmoALT 45927* Alternate proof for thincmo 45926. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
 
Theoremthincmod 45928* At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))       (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
 
Theoremthincn0eu 45929* In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))       (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
 
Theoremthincid 45930 In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &    1 = (Id‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑋))       (𝜑𝐹 = ( 1𝑋))
 
Theoremthincmon 45931 In a thin category, all morphisms are monomorphisms. The converse does not hold. See grptcmon 45991. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑀 = (Mono‘𝐶)       (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌))
 
Theoremthincepi 45932 In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 45992. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐸 = (Epi‘𝐶)       (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌))
 
Theoremisthincd2lem2 45933* Lemma for isthincd2 45935. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))    &   (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍))
 
Theoremisthincd 45934* The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))    &   (𝜑𝐶 ∈ Cat)       (𝜑𝐶 ∈ ThinCat)
 
Theoremisthincd2 45935* The predicate "𝐶 is a thin category" without knowing 𝐶 is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))    &   (𝜑· = (comp‘𝐶))    &   (𝜑𝐶𝑉)    &   (𝜓 ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))))    &   ((𝜑𝑦𝐵) → 1 ∈ (𝑦𝐻𝑦))    &   ((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))       (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
 
Theoremoppcthin 45936 The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.)
𝑂 = (oppCat‘𝐶)       (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat)
 
Theoremsubthinc 45937 A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐷 = (𝐶cat 𝐽)    &   (𝜑𝐽 ∈ (Subcat‘𝐶))    &   (𝜑𝐶 ∈ ThinCat)       (𝜑𝐷 ∈ ThinCat)
 
Theoremfuncthinclem1 45938* Lemma for functhinc 45942. Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.)
𝐵 = (Base‘𝐷)    &   𝐶 = (Base‘𝐸)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &   (𝜑𝐸 ∈ ThinCat)    &   (𝜑𝐹:𝐵𝐶)    &   𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))    &   ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))       (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹𝑧)𝐽(𝐹𝑤))) ↔ 𝐺 = 𝐾))
 
Theoremfuncthinclem2 45939* Lemma for functhinc 45942. (Contributed by Zhi Wang, 1-Oct-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑 → ∀𝑥𝐵𝑦𝐵 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))       (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
 
Theoremfuncthinclem3 45940* Lemma for functhinc 45942. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑀 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))))    &   (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))    &   (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))       (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
 
Theoremfuncthinclem4 45941* Lemma for functhinc 45942. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.)
𝐵 = (Base‘𝐷)    &   𝐶 = (Base‘𝐸)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐸 ∈ ThinCat)    &   (𝜑𝐹:𝐵𝐶)    &   𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))    &   (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))    &    1 = (Id‘𝐷)    &   𝐼 = (Id‘𝐸)    &    · = (comp‘𝐷)    &   𝑂 = (comp‘𝐸)       ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
 
Theoremfuncthinc 45942* A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 45909). (Contributed by Zhi Wang, 1-Oct-2024.)
𝐵 = (Base‘𝐷)    &   𝐶 = (Base‘𝐸)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐸 ∈ ThinCat)    &   (𝜑𝐹:𝐵𝐶)    &   𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))    &   (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))       (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺𝐺 = 𝐾))
 
Theoremfullthinc 45943* A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
𝐵 = (Base‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐷 ∈ ThinCat)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)       (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
 
Theoremfullthinc2 45944 A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
𝐵 = (Base‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐷 ∈ ThinCat)    &   (𝜑𝐹(𝐶 Full 𝐷)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
 
Theoremthincfth 45945 A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)       (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
 
Theoremthincciso 45946* Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 16-Oct-2024.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   𝑅 = (Base‘𝑋)    &   𝑆 = (Base‘𝑌)    &   𝐻 = (Hom ‘𝑋)    &   𝐽 = (Hom ‘𝑌)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑋 ∈ ThinCat)    &   (𝜑𝑌 ∈ ThinCat)       (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
 
Theorem0thincg 45947 Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.)
((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat)
 
Theorem0thinc 45948 The empty category (see 0cat 17146) is thin. (Contributed by Zhi Wang, 17-Sep-2024.)
∅ ∈ ThinCat
 
Theoremindthinc 45949* An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are . This is a special case of prsthinc 45951, where = (𝐵 × 𝐵). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))    &   (𝜑 → ∅ = (comp‘𝐶))    &   (𝜑𝐶𝑉)       (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
 
TheoremindthincALT 45950* An alternate proof for indthinc 45949 assuming more axioms including ax-pow 5243 and ax-un 7501. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))    &   (𝜑 → ∅ = (comp‘𝐶))    &   (𝜑𝐶𝑉)       (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
 
Theoremprsthinc 45951* Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 45908 and catprs2 45909 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑 → ( × {1o}) = (Hom ‘𝐶))    &   (𝜑 → ∅ = (comp‘𝐶))    &   (𝜑 = (le‘𝐶))    &   (𝜑𝐶 ∈ Proset )       (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
 
Theoremsetcthin 45952* A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐶 = (SetCat‘𝑈))    &   (𝜑𝑈𝑉)    &   (𝜑 → ∀𝑥𝑈 ∃*𝑝 𝑝𝑥)       (𝜑𝐶 ∈ ThinCat)
 
Theoremsetc2othin 45953 The category (SetCat‘2o) is thin. A special case of setcthin 45952. (Contributed by Zhi Wang, 20-Sep-2024.)
(SetCat‘2o) ∈ ThinCat
 
Theoremthincsect 45954 In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))))
 
Theoremthincsect2 45955 In a thin category, 𝐹 is a section of 𝐺 iff 𝐺 is a section of 𝐹. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹))
 
Theoremthincinv 45956 In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺 (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)    &   𝑁 = (Inv‘𝐶)       (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑆𝑌)𝐺))
 
Theoremthinciso 45957 In a thin category, 𝐹:𝑋𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅))
 
Theoremthinccic 45958 In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅)))
 
20.42.13.2  Preordered sets as thin categories
 
Syntaxcprstc 45959 Class function defining preordered sets as categories.
class ProsetToCat
 
Definitiondf-prstc 45960 Definition of the function converting a preordered set to a category. Justified by prsthinc 45951.

This definition is somewhat arbitrary. Example 3.3(4.d) of [Adamek] p. 24 demonstrates an alternate definition with pairwise disjoint hom-sets. The behavior of the function is defined entirely, up to isomorphism, by prstcnid 45963, prstchom 45972, and prstcthin 45971. Other important properties include prstcbas 45964, prstcleval 45965, prstcle 45966, prstcocval 45967, prstcoc 45968, prstchom2 45973, and prstcprs 45970. Use those instead.

Note that the defining property prstchom 45972 is equivalent to prstchom2 45973 given prstcthin 45971. See thincn0eu 45929 for justification.

"ProsetToCat" was taken instead of "ProsetCat" because the latter might mean the category of preordered sets (classes). However, "ProsetToCat" seems too long. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)

ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
 
Theoremprstcval 45961 Lemma for prstcnidlem 45962 and prstcthin 45971. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )       (𝜑𝐶 = ((𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
 
Theoremprstcnidlem 45962 Lemma for prstcnid 45963 and prstchomval 45969. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ (comp‘ndx)       (𝜑 → (𝐸𝐶) = (𝐸‘(𝐾 sSet ⟨(Hom ‘ndx), ((le‘𝐾) × {1o})⟩)))
 
Theoremprstcnid 45963 Components other than Hom and comp are unchanged. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ (comp‘ndx)    &   (𝐸‘ndx) ≠ (Hom ‘ndx)       (𝜑 → (𝐸𝐾) = (𝐸𝐶))
 
Theoremprstcbas 45964 The base set is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   (𝜑𝐵 = (Base‘𝐾))       (𝜑𝐵 = (Base‘𝐶))
 
Theoremprstcleval 45965 Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   (𝜑 = (le‘𝐾))       (𝜑 = (le‘𝐶))
 
Theoremprstcle 45966 Value of the less-than-or-equal-to relation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   (𝜑 = (le‘𝐾))       (𝜑 → (𝑋 𝑌𝑋(le‘𝐶)𝑌))
 
Theoremprstcocval 45967 Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   (𝜑 = (oc‘𝐾))       (𝜑 = (oc‘𝐶))
 
Theoremprstcoc 45968 Orthocomplementation is unchanged. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   (𝜑 = (oc‘𝐾))       (𝜑 → ( 𝑋) = ((oc‘𝐶)‘𝑋))
 
Theoremprstchomval 45969 Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024.) (New usage is discouraged.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   (𝜑 = (le‘𝐶))       (𝜑 → ( × {1o}) = (Hom ‘𝐶))
 
Theoremprstcprs 45970 The category is a preordered set. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )       (𝜑𝐶 ∈ Proset )
 
Theoremprstcthin 45971 The preordered set is equipped with a thin category. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )       (𝜑𝐶 ∈ ThinCat)
 
Theoremprstchom 45972 Hom-sets of the constructed category are dependent on the preorder.

Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat. However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 20-Sep-2024.)

(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   (𝜑 = (le‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))       (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐻𝑌) ≠ ∅))
 
Theoremprstchom2 45973* Hom-sets of the constructed category are dependent on the preorder.

Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat ( see prstchom2ALT 45974). However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 21-Sep-2024.)

(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   (𝜑 = (le‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   (𝜑𝑋 ∈ (Base‘𝐶))    &   (𝜑𝑌 ∈ (Base‘𝐶))       (𝜑 → (𝑋 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
 
Theoremprstchom2ALT 45974* Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc 45960. See prstchom2 45973 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   (𝜑 = (le‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))       (𝜑 → (𝑋 𝑌 ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
 
Theorempostcpos 45975 The converted category is a poset iff the original proset is a poset. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )       (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset))
 
TheorempostcposALT 45976 Alternate proof for postcpos 45975. (Contributed by Zhi Wang, 25-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )       (𝜑 → (𝐾 ∈ Poset ↔ 𝐶 ∈ Poset))
 
Theorempostc 45977* The converted category is a poset iff no distinct objects are isomorphic. (Contributed by Zhi Wang, 25-Sep-2024.)
(𝜑𝐶 = (ProsetToCat‘𝐾))    &   (𝜑𝐾 ∈ Proset )    &   𝐵 = (Base‘𝐶)       (𝜑 → (𝐶 ∈ Poset ↔ ∀𝑥𝐵𝑦𝐵 (𝑥( ≃𝑐𝐶)𝑦𝑥 = 𝑦)))
 
20.42.13.3  Monoids as categories
 
Syntaxcmndtc 45978 Class function defining monoids as categories.
class MndToCat
 
Definitiondf-mndtc 45979 Definition of the function converting a monoid to a category. Example 3.3(4.e) of [Adamek] p. 24.

The definition of the base set is arbitrary. The whole extensible structure becomes the object here (see mndtcbasval 45981) , instead of just the base set, as is the case in Example 3.3(4.e) of [Adamek] p. 24.

The resulting category is defined entirely, up to isomorphism, by mndtcbas 45982, mndtchom 45985, mndtcco 45986. Use those instead.

See example 3.26(3) of [Adamek] p. 33 for more on isomorphism.

"MndToCat" was taken instead of "MndCat" because the latter might mean the category of monoids. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)

MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
 
Theoremmndtcval 45980 Value of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)       (𝜑𝐶 = {⟨(Base‘ndx), {𝑀}⟩, ⟨(Hom ‘ndx), {⟨𝑀, 𝑀, (Base‘𝑀)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑀, 𝑀, 𝑀⟩, (+g𝑀)⟩}⟩})
 
Theoremmndtcbasval 45981 The base set of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝐵 = (Base‘𝐶))       (𝜑𝐵 = {𝑀})
 
Theoremmndtcbas 45982* The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝐵 = (Base‘𝐶))       (𝜑 → ∃!𝑥 𝑥𝐵)
 
Theoremmndtcob 45983 Lemma for mndtchom 45985 and mndtcco 45986. (Contributed by Zhi Wang, 22-Sep-2024.) (New usage is discouraged.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝑋𝐵)       (𝜑𝑋 = 𝑀)
 
Theoremmndtcbas2 45984 Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑𝑋 = 𝑌)
 
Theoremmndtchom 45985 The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐻 = (Hom ‘𝐶))       (𝜑 → (𝑋𝐻𝑌) = (Base‘𝑀))
 
Theoremmndtcco 45986 The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑· = (comp‘𝐶))       (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (+g𝑀))
 
Theoremmndtcco2 45987 The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑· = (comp‘𝐶))    &   (𝜑 = (⟨𝑋, 𝑌· 𝑍))       (𝜑 → (𝐺 𝐹) = (𝐺(+g𝑀)𝐹))
 
Theoremmndtccatid 45988* Lemma for mndtccat 45989 and mndtcid 45990. (Contributed by Zhi Wang, 22-Sep-2024.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)       (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g𝑀))))
 
Theoremmndtccat 45989 The function value is a category. (Contributed by Zhi Wang, 22-Sep-2024.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)       (𝜑𝐶 ∈ Cat)
 
Theoremmndtcid 45990 The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.)
(𝜑𝐶 = (MndToCat‘𝑀))    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝑋𝐵)    &   (𝜑1 = (Id‘𝐶))       (𝜑 → ( 1𝑋) = (0g𝑀))
 
Theoremgrptcmon 45991 All morphisms in a category converted from a group are monomorphisms. (Contributed by Zhi Wang, 23-Sep-2024.)
(𝜑𝐶 = (MndToCat‘𝐺))    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐻 = (Hom ‘𝐶))    &   (𝜑𝑀 = (Mono‘𝐶))       (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌))
 
Theoremgrptcepi 45992 All morphisms in a category converted from a group are epimorphisms. (Contributed by Zhi Wang, 23-Sep-2024.)
(𝜑𝐶 = (MndToCat‘𝐺))    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐻 = (Hom ‘𝐶))    &   (𝜑𝐸 = (Epi‘𝐶))       (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌))
 
20.43  Mathbox for Emmett Weisz
 
20.43.1  Miscellaneous Theorems

Some of these theorems are used in the series of lemmas and theorems proving the defining properties of setrecs.

 
Theoremnfintd 45993 Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020.)
(𝜑𝑥𝐴)       (𝜑𝑥 𝐴)
 
Theoremnfiund 45994* Bound-variable hypothesis builder for indexed union. (Contributed by Emmett Weisz, 6-Dec-2019.) Add disjoint variable condition to avoid ax-13 2371. See nfiundg 45995 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
𝑥𝜑    &   (𝜑𝑦𝐴)    &   (𝜑𝑦𝐵)       (𝜑𝑦 𝑥𝐴 𝐵)
 
Theoremnfiundg 45995 Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2371, see nfiund 45994 for a weaker version that does not require it. (Contributed by Emmett Weisz, 6-Dec-2019.) (New usage is discouraged.)
𝑥𝜑    &   (𝜑𝑦𝐴)    &   (𝜑𝑦𝐵)       (𝜑𝑦 𝑥𝐴 𝐵)
 
Theoremiunord 45996* The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. This proof is based on the proof of ssorduni 7541, but does not use it directly, since ssorduni 7541 does not work when 𝐵 is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019.)
(∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)
 
Theoremiunordi 45997* The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. (Contributed by Emmett Weisz, 3-Nov-2019.)
Ord 𝐵       Ord 𝑥𝐴 𝐵
 
Theoremspd 45998 Specialization deduction, using implicit substitution. Based on the proof of spimed 2387. (Contributed by Emmett Weisz, 17-Jan-2020.)
(𝜒 → Ⅎ𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜒 → (∀𝑥𝜑𝜓))
 
Theoremspcdvw 45999* A version of spcdv 3499 where 𝜓 and 𝜒 are direct substitutions of each other. This theorem is useful because it does not require 𝜑 and 𝑥 to be distinct variables. (Contributed by Emmett Weisz, 12-Apr-2020.)
(𝜑𝐴𝐵)    &   (𝑥 = 𝐴 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓𝜒))
 
Theoremtfis2d 46000* Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020.)
(𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))    &   (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜓)))       (𝜑 → (𝑥 ∈ On → 𝜓))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46123
  Copyright terms: Public domain < Previous  Next >