| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cadrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| cadrot | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜓, 𝜒, 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cadcoma 1612 | . 2 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜓, 𝜑, 𝜒)) | |
| 2 | cadcomb 1613 | . 2 ⊢ (cadd(𝜓, 𝜑, 𝜒) ↔ cadd(𝜓, 𝜒, 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜓, 𝜒, 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 caddwcad 1606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-cad 1607 |
| This theorem is referenced by: wl-df-3mintru2 37507 |
| Copyright terms: Public domain | W3C validator |