|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cadrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| cadrot | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜓, 𝜒, 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cadcoma 1612 | . 2 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜓, 𝜑, 𝜒)) | |
| 2 | cadcomb 1613 | . 2 ⊢ (cadd(𝜓, 𝜑, 𝜒) ↔ cadd(𝜓, 𝜒, 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜓, 𝜒, 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 caddwcad 1606 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-xor 1512 df-cad 1607 | 
| This theorem is referenced by: wl-df-3mintru2 37485 | 
| Copyright terms: Public domain | W3C validator |