MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadcomb Structured version   Visualization version   GIF version

Theorem cadcomb 1616
Description: Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.)
Assertion
Ref Expression
cadcomb (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜑, 𝜒, 𝜓))

Proof of Theorem cadcomb
StepHypRef Expression
1 cadan 1612 . . 3 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒) ∧ (𝜓𝜒)))
2 3ancoma 1096 . . 3 (((𝜑𝜓) ∧ (𝜑𝜒) ∧ (𝜓𝜒)) ↔ ((𝜑𝜒) ∧ (𝜑𝜓) ∧ (𝜓𝜒)))
3 orcom 866 . . . 4 ((𝜓𝜒) ↔ (𝜒𝜓))
433anbi3i 1157 . . 3 (((𝜑𝜒) ∧ (𝜑𝜓) ∧ (𝜓𝜒)) ↔ ((𝜑𝜒) ∧ (𝜑𝜓) ∧ (𝜒𝜓)))
51, 2, 43bitri 296 . 2 (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜒) ∧ (𝜑𝜓) ∧ (𝜒𝜓)))
6 cadan 1612 . 2 (cadd(𝜑, 𝜒, 𝜓) ↔ ((𝜑𝜒) ∧ (𝜑𝜓) ∧ (𝜒𝜓)))
75, 6bitr4i 277 1 (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜑, 𝜒, 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 843  w3a 1085  caddwcad 1609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-cad 1610
This theorem is referenced by:  cadrot  1617
  Copyright terms: Public domain W3C validator