| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cadcomb | Structured version Visualization version GIF version | ||
| Description: Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| cadcomb | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜑, 𝜒, 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cadan 1609 | . . 3 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) | |
| 2 | 3ancoma 1098 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜓) ∧ (𝜓 ∨ 𝜒))) | |
| 3 | orcom 871 | . . . 4 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
| 4 | 3 | 3anbi3i 1160 | . . 3 ⊢ (((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜓) ∧ (𝜓 ∨ 𝜒)) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜓) ∧ (𝜒 ∨ 𝜓))) |
| 5 | 1, 2, 4 | 3bitri 297 | . 2 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜓) ∧ (𝜒 ∨ 𝜓))) |
| 6 | cadan 1609 | . 2 ⊢ (cadd(𝜑, 𝜒, 𝜓) ↔ ((𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜓) ∧ (𝜒 ∨ 𝜓))) | |
| 7 | 5, 6 | bitr4i 278 | 1 ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜑, 𝜒, 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 848 ∧ w3a 1087 caddwcad 1606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-xor 1512 df-cad 1607 |
| This theorem is referenced by: cadrot 1614 |
| Copyright terms: Public domain | W3C validator |