MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv3v2 Structured version   Visualization version   GIF version

Theorem cbv3v2 2242
Description: Version of cbv3 2405 with two disjoint variable conditions, which does not require ax-11 2158 nor ax-13 2380. (Contributed by BJ, 24-Jun-2019.) (Proof shortened by Wolf Lammen, 30-Aug-2021.)
Hypotheses
Ref Expression
cbv3v2.nf 𝑥𝜓
cbv3v2.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbv3v2 (∀𝑥𝜑 → ∀𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem cbv3v2
StepHypRef Expression
1 cbv3v2.nf . . 3 𝑥𝜓
2 cbv3v2.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spimfv 2240 . 2 (∀𝑥𝜑𝜓)
43alrimiv 1926 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782
This theorem is referenced by:  bj-cbv3hv2  36763
  Copyright terms: Public domain W3C validator