MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv3 Structured version   Visualization version   GIF version

Theorem cbv3 2395
Description: Rule used to change bound variables, using implicit substitution, that does not use ax-c9 37104. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker cbv3v 2330 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbv3.1 𝑦𝜑
cbv3.2 𝑥𝜓
cbv3.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbv3 (∀𝑥𝜑 → ∀𝑦𝜓)

Proof of Theorem cbv3
StepHypRef Expression
1 cbv3.1 . . . 4 𝑦𝜑
21nf5ri 2186 . . 3 (𝜑 → ∀𝑦𝜑)
32hbal 2165 . 2 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
4 cbv3.2 . . 3 𝑥𝜓
5 cbv3.3 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
64, 5spim 2385 . 2 (∀𝑥𝜑𝜓)
73, 6alrimih 1824 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-11 2152  ax-12 2169  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780  df-nf 1784
This theorem is referenced by:  cbval  2396  cbv1  2400  cbv3h  2402  axc16i  2434
  Copyright terms: Public domain W3C validator