Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbv3hv2 Structured version   Visualization version   GIF version

Theorem bj-cbv3hv2 34608
Description: Version of cbv3h 2404 with two disjoint variable conditions, which does not require ax-11 2162 nor ax-13 2372. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-cbv3hv2.nf (𝜓 → ∀𝑥𝜓)
bj-cbv3hv2.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
bj-cbv3hv2 (∀𝑥𝜑 → ∀𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem bj-cbv3hv2
StepHypRef Expression
1 bj-cbv3hv2.nf . . 3 (𝜓 → ∀𝑥𝜓)
21nf5i 2150 . 2 𝑥𝜓
3 bj-cbv3hv2.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3cbv3v2 2243 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-10 2145  ax-12 2179
This theorem depends on definitions:  df-bi 210  df-ex 1787  df-nf 1791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator