MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimfv Structured version   Visualization version   GIF version

Theorem spimfv 2235
Description: Specialization, using implicit substitution. Version of spim 2387 with a disjoint variable condition, which does not require ax-13 2372. See spimvw 2000 for a version with two disjoint variable conditions, requiring fewer axioms, and spimv 2390 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
spimfv.nf 𝑥𝜓
spimfv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimfv (∀𝑥𝜑𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem spimfv
StepHypRef Expression
1 spimfv.nf . 2 𝑥𝜓
2 ax6ev 1974 . . 3 𝑥 𝑥 = 𝑦
3 spimfv.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3eximii 1840 . 2 𝑥(𝜑𝜓)
51, 419.36i 2227 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by:  chvarfv  2236  cbv3v2  2237  cbv3v  2334  setrec2fun  46284
  Copyright terms: Public domain W3C validator