| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvral3vw | Structured version Visualization version GIF version | ||
| Description: Change bound variables of triple restricted universal quantification, using implicit substitution. Version of cbvral3v 3369 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by NM, 10-May-2005.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbvral3vw.1 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) |
| cbvral3vw.2 | ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) |
| cbvral3vw.3 | ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvral3vw | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral3vw.1 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | 2ralbidv 3220 | . . 3 ⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒)) |
| 3 | 2 | cbvralvw 3236 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒) |
| 4 | cbvral3vw.2 | . . . 4 ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) | |
| 5 | cbvral3vw.3 | . . . 4 ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) | |
| 6 | 4, 5 | cbvral2vw 3240 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒 ↔ ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| 7 | 6 | ralbii 3092 | . 2 ⊢ (∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| 8 | 3, 7 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-clel 2815 df-ral 3061 |
| This theorem is referenced by: cbvral4vw 3243 latdisd 18543 addsprop 28010 dffltz 42649 isthincd2lem2 49109 |
| Copyright terms: Public domain | W3C validator |