MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexdvaOLD Structured version   Visualization version   GIF version

Theorem cbvrexdvaOLD 3317
Description: Obsolete version of cbvrexdva 3213 as of 9-Mar-2025. (Contributed by David Moews, 1-May-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvrexdva.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvrexdvaOLD (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐴 𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvrexdvaOLD
StepHypRef Expression
1 cbvrexdva.1 . 2 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
2 eqidd 2732 . 2 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐴)
31, 2cbvrexdva2 3315 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator