![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrexdva | Structured version Visualization version GIF version |
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) Avoid ax-9 2108, ax-ext 2696. (Revised by Wolf Lammen, 9-Mar-2025.) |
Ref | Expression |
---|---|
cbvraldva.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvrexdva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvraldva.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
2 | 1 | notbid 317 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒)) |
3 | 2 | cbvraldva 3226 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜒)) |
4 | ralnex 3061 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
5 | ralnex 3061 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜒 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜒) | |
6 | 3, 4, 5 | 3bitr3g 312 | . 2 ⊢ (𝜑 → (¬ ∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜒)) |
7 | 6 | con4bid 316 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∀wral 3050 ∃wrex 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-clel 2802 df-ral 3051 df-rex 3060 |
This theorem is referenced by: tfrlem3a 8398 2sqmo 27415 trgcopy 28680 trgcopyeu 28682 acopyeu 28710 tgasa1 28734 dispcmp 33591 satffunlem1lem1 35143 satffunlem2lem1 35145 f1omptsn 36947 pibt2 37027 prjsprel 42163 opnneilem 48110 |
Copyright terms: Public domain | W3C validator |