![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrexdva | Structured version Visualization version GIF version |
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) Avoid ax-9 2115, ax-ext 2702. (Revised by Wolf Lammen, 9-Mar-2025.) |
Ref | Expression |
---|---|
cbvraldva.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvrexdva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvraldva.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒)) |
3 | 2 | cbvraldva 3235 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜒)) |
4 | ralnex 3071 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
5 | ralnex 3071 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜒 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜒) | |
6 | 3, 4, 5 | 3bitr3g 313 | . 2 ⊢ (𝜑 → (¬ ∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜒)) |
7 | 6 | con4bid 317 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wral 3060 ∃wrex 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-clel 2809 df-ral 3061 df-rex 3070 |
This theorem is referenced by: tfrlem3a 8381 2sqmo 27177 trgcopy 28323 trgcopyeu 28325 acopyeu 28353 tgasa1 28377 dispcmp 33138 satffunlem1lem1 34692 satffunlem2lem1 34694 f1omptsn 36522 pibt2 36602 prjsprel 41649 opnneilem 47626 |
Copyright terms: Public domain | W3C validator |