MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexdva Structured version   Visualization version   GIF version

Theorem cbvrexdva 3227
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) Avoid ax-9 2108, ax-ext 2696. (Revised by Wolf Lammen, 9-Mar-2025.)
Hypothesis
Ref Expression
cbvraldva.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvrexdva (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐴 𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvrexdva
StepHypRef Expression
1 cbvraldva.1 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
21notbid 317 . . . 4 ((𝜑𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒))
32cbvraldva 3226 . . 3 (𝜑 → (∀𝑥𝐴 ¬ 𝜓 ↔ ∀𝑦𝐴 ¬ 𝜒))
4 ralnex 3061 . . 3 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
5 ralnex 3061 . . 3 (∀𝑦𝐴 ¬ 𝜒 ↔ ¬ ∃𝑦𝐴 𝜒)
63, 4, 53bitr3g 312 . 2 (𝜑 → (¬ ∃𝑥𝐴 𝜓 ↔ ¬ ∃𝑦𝐴 𝜒))
76con4bid 316 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wral 3050  wrex 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-clel 2802  df-ral 3051  df-rex 3060
This theorem is referenced by:  tfrlem3a  8398  2sqmo  27415  trgcopy  28680  trgcopyeu  28682  acopyeu  28710  tgasa1  28734  dispcmp  33591  satffunlem1lem1  35143  satffunlem2lem1  35145  f1omptsn  36947  pibt2  37027  prjsprel  42163  opnneilem  48110
  Copyright terms: Public domain W3C validator