MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrexdva Structured version   Visualization version   GIF version

Theorem cbvrexdva 3393
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvraldva.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvrexdva (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐴 𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvrexdva
StepHypRef Expression
1 cbvraldva.1 . 2 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
2 eqidd 2741 . 2 ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐴)
31, 2cbvrexdva2 3391 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wrex 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787  df-cleq 2732  df-clel 2818  df-rex 3072
This theorem is referenced by:  tfrlem3a  8200  2sqmo  26596  trgcopy  27176  trgcopyeu  27178  acopyeu  27206  tgasa1  27230  dispcmp  31818  satffunlem1lem1  33373  satffunlem2lem1  33375  f1omptsn  35517  pibt2  35597  prjsprel  40452  opnneilem  46178
  Copyright terms: Public domain W3C validator