| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexdva | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) Avoid ax-9 2119, ax-ext 2708. (Revised by Wolf Lammen, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| cbvraldva.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvrexdva | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvraldva.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 3 | 2 | cbvraldva 3226 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝜒)) |
| 4 | ralnex 3063 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 5 | ralnex 3063 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝜒 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜒) | |
| 6 | 3, 4, 5 | 3bitr3g 313 | . 2 ⊢ (𝜑 → (¬ ∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐴 𝜒)) |
| 7 | 6 | con4bid 317 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2810 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: tfrlem3a 8396 2sqmo 27405 trgcopy 28788 trgcopyeu 28790 acopyeu 28818 tgasa1 28842 dispcmp 33895 satffunlem1lem1 35429 satffunlem2lem1 35431 cbviundavw 36285 f1omptsn 37360 pibt2 37440 prjsprel 42594 opnneilem 48847 |
| Copyright terms: Public domain | W3C validator |