|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbvrexdva2 | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 8-Jan-2025.) | 
| Ref | Expression | 
|---|---|
| cbvraldva2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | 
| cbvraldva2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| cbvrexdva2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvraldva2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒)) | 
| 3 | cbvraldva2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) | |
| 4 | 2, 3 | cbvraldva2 3347 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝜒)) | 
| 5 | ralnex 3071 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 6 | ralnex 3071 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ¬ 𝜒 ↔ ¬ ∃𝑦 ∈ 𝐵 𝜒) | |
| 7 | 4, 5, 6 | 3bitr3g 313 | . 2 ⊢ (𝜑 → (¬ ∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∃𝑦 ∈ 𝐵 𝜒)) | 
| 8 | 7 | con4bid 317 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∀wral 3060 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: cbvrexdvaOLD 3351 mreexexlemd 17688 eulerpartlemgvv 34379 cbviundavw2 36288 primrootsunit1 42099 ismnu 44285 | 
| Copyright terms: Public domain | W3C validator |