Home | Metamath
Proof Explorer Theorem List (p. 34 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nfrmow 3301* | Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo 3303 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfreu 3302 | Bound-variable hypothesis builder for restricted unique existence. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfreuw 3300 when possible. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfrmo 3303 | Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfrmow 3301 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 | ||
Theorem | rabid 3304 | An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.) |
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | rabrab 3305 | Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | rabidim1 3306 | Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | ||
Theorem | rabid2 3307* | An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rabid2f 3308 | An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rabbi 3309 | Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 3402. (Contributed by NM, 25-Nov-2013.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | nfrab1 3310 | The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | ||
Theorem | nfrabw 3311* | A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3312 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 13-Oct-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} | ||
Theorem | nfrab 3312 | A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfrabw 3311 when possible. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} | ||
Theorem | reubida 3313 | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | reubidva 3314* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | reubidv 3315* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | reubiia 3316 | Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 14-Nov-2004.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reubii 3317 | Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rmobida 3318 | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rmobidva 3319* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rmobidv 3320* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rmobiia 3321 | Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rmobii 3322 | Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) | ||
Theorem | raleqf 3323 | Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | rexeqf 3324 | Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | reueq1f 3325 | Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | rmoeq1f 3326 | Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | raleqbidv 3327* | Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2139, ax-11 2156, and ax-12 2173 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | rexeqbidv 3328* | Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2139, ax-11 2156, and ax-12 2173 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | raleqbidvv 3329* | Version of raleqbidv 3327 with additional disjoint variable conditions, not requiring ax-8 2110 nor df-clel 2817. (Contributed by BJ, 22-Sep-2024.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | rexeqbidvv 3330* | Version of rexeqbidv 3328 with additional disjoint variable conditions, not requiring ax-8 2110 nor df-clel 2817. (Contributed by Wolf Lammen, 25-Sep-2024.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | raleqbi1dv 3331* | Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | rexeqbi1dv 3332* | Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | raleq 3333* | Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2139, ax-11 2156, and ax-12 2173. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | rexeq 3334* | Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2139, ax-11 2156, and ax-12 2173. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | reueq1 3335* | Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2139, ax-11 2156, and ax-12 2173. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | rmoeq1 3336* | Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) Remove usage of ax-10 2139, ax-11 2156, and ax-12 2173. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | raleqi 3337* | Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) | ||
Theorem | rexeqi 3338* | Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) | ||
Theorem | raleqdv 3339* | Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | rexeqdv 3340* | Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | reueqd 3341* | Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | rmoeqd 3342* | Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | raleqbid 3343 | Equality deduction for restricted universal quantifier. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | rexeqbid 3344 | Equality deduction for restricted existential quantifier. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | raleqbidva 3345* | Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | rexeqbidva 3346* | Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | raleleq 3347* | All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020.) |
⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | raleleqALT 3348* | Alternate proof of raleleq 3347 using ralel 3074, being longer and using more axioms. (Contributed by AV, 30-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | moel 3349* | "At most one" element in a set. (Contributed by Thierry Arnoux, 26-Jul-2018.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) | ||
Theorem | mormo 3350 | Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | reu5 3351 | Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | reurex 3352 | Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | 2reu2rex 3353 | Double restricted existential uniqueness, analogous to 2eu2ex 2645. (Contributed by Alexander van der Vekens, 25-Jun-2017.) |
⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
Theorem | reurmo 3354 | Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rmo5 3355 | Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.) |
⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | nrexrmo 3356 | Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.) |
⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | reueubd 3357* | Restricted existential uniqueness is equivalent to existential uniqueness if the unique element is in the restricting class. (Contributed by AV, 4-Jan-2021.) |
⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝑉 𝜓 ↔ ∃!𝑥𝜓)) | ||
Theorem | cbvralfw 3358* | Rule used to change bound variables, using implicit substitution. Version of cbvralf 3361 with a disjoint variable condition, which does not require ax-10 2139, ax-13 2372. (Contributed by NM, 7-Mar-2004.) (Revised by Gino Giotto, 23-May-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvralfwOLD 3359* | Obsolete version of cbvralfw 3358 as of 23-May-2024. (Contributed by NM, 7-Mar-2004.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrexfw 3360* | Rule used to change bound variables, using implicit substitution. Version of cbvrexf 3362 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by FL, 27-Apr-2008.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvralf 3361 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvralfw 3358 when possible. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrexf 3362 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexfw 3360 when possible. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvralw 3363* | Rule used to change bound variables, using implicit substitution. Version of cbvral 3368 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrexw 3364* | Rule used to change bound variables, using implicit substitution. Version of cbvrex 3369 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvreuw 3365* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 3370 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrmow 3366* | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo 3371 with a disjoint variable condition, which does not require ax-10 2139, ax-13 2372. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 23-May-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrmowOLD 3367* | Obsolete version of cbvrmow 3366 as of 23-May-2024. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvral 3368* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvralw 3363 when possible. (Contributed by NM, 31-Jul-2003.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrex 3369* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexw 3364 when possible. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvreu 3370* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvreuw 3365 when possible. (Contributed by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrmo 3371* | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrmow 3366, cbvrmovw 3374 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvralvw 3372* | Change the bound variable of a restricted universal quantifier using implicit substitution. Version of cbvralv 3377 with a disjoint variable condition, which does not require ax-10 2139, ax-11 2156, ax-12 2173, ax-13 2372. (Contributed by NM, 28-Jan-1997.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrexvw 3373* | Change the bound variable of a restricted existential quantifier using implicit substitution. Version of cbvrexv 3378 with a disjoint variable condition, which does not require ax-10 2139, ax-11 2156, ax-12 2173, ax-13 2372. (Contributed by NM, 2-Jun-1998.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrmovw 3374* | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmov 3380 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvreuvw 3375* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreuv 3379 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 5-Apr-2004.) (Revised by Gino Giotto, 30-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvreuvwOLD 3376* | Obsolete version of cbvreuvw 3375 as of 30-Sep-2024. (Contributed by NM, 5-Apr-2004.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvralv 3377* | Change the bound variable of a restricted universal quantifier using implicit substitution. See cbvralvw 3372 based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvralvw 3372 when possible. (Contributed by NM, 28-Jan-1997.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrexv 3378* | Change the bound variable of a restricted existential quantifier using implicit substitution. See cbvrexvw 3373 based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexvw 3373 when possible. (Contributed by NM, 2-Jun-1998.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvreuv 3379* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. See cbvreuvw 3375 for a version without ax-13 2372, but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvreuvw 3375 when possible. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrmov 3380* | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Alexander van der Vekens, 17-Jun-2017.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvraldva2 3381* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | cbvrexdva2 3382* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 12-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | cbvraldva 3383* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐴 𝜒)) | ||
Theorem | cbvrexdva 3384* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) | ||
Theorem | cbvral2vw 3385* | Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 3388 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 10-Aug-2004.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | ||
Theorem | cbvrex2vw 3386* | Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 3389 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by FL, 2-Jul-2012.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) | ||
Theorem | cbvral3vw 3387* | Change bound variables of triple restricted universal quantification, using implicit substitution. Version of cbvral3v 3390 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 10-May-2005.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) | ||
Theorem | cbvral2v 3388* | Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvral2vw 3385 when possible. (Contributed by NM, 10-Aug-2004.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐵 𝜓) | ||
Theorem | cbvrex2v 3389* | Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrex2vw 3386 when possible. (Contributed by FL, 2-Jul-2012.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑤 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝜓) | ||
Theorem | cbvral3v 3390* | Change bound variables of triple restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvral3vw 3387 when possible. (Contributed by NM, 10-May-2005.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) | ||
Theorem | cbvralsvw 3391* | Change bound variable by using a substitution. Version of cbvralsv 3393 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 20-Nov-2005.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
Theorem | cbvrexsvw 3392* | Change bound variable by using a substitution. Version of cbvrexsv 3394 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 2-Mar-2008.) (Revised by Gino Giotto, 10-Jan-2024.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
Theorem | cbvralsv 3393* | Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvralsvw 3391 when possible. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
Theorem | cbvrexsv 3394* | Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvrexsvw 3392 when possible. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.) (New usage is discouraged.) |
⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) | ||
Theorem | sbralie 3395* | Implicit to explicit substitution that swaps variables in a rectrictedly universally quantified expression. (Contributed by NM, 5-Sep-2004.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) | ||
Theorem | rabbiia 3396 | Equivalent formulas yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
Theorem | rabbii 3397 | Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 3404. (Contributed by Peter Mazsa, 1-Nov-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
Theorem | rabbida 3398 | Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3402 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | rabbid 3399 | Version of rabbidv 3404 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | rabbidva2 3400* | Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |