Home | Metamath
Proof Explorer Theorem List (p. 34 of 468) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29378) |
Hilbert Space Explorer
(29379-30901) |
Users' Mathboxes
(30902-46778) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rexeqbidvv 3301* | Version of rexeqbidv 3315 with additional disjoint variable conditions, not requiring ax-8 2105 nor df-clel 2813. (Contributed by Wolf Lammen, 25-Sep-2024.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | raleqbi1dv 3302* | Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | rexeqbi1dv 3303* | Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | raleq 3304* | Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2134, ax-11 2151, and ax-12 2168. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | rexeq 3305* | Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2134, ax-11 2151, and ax-12 2168. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | raleqi 3306* | Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) | ||
Theorem | rexeqi 3307* | Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) | ||
Theorem | raleqdv 3308* | Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | rexeqdv 3309* | Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | raleqbii 3310 | Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒) | ||
Theorem | rexeqbii 3311 | Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝐴 = 𝐵 & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒) | ||
Theorem | raleleq 3312* | All elements of a class are elements of a class equal to this class. (Contributed by AV, 30-Oct-2020.) |
⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | raleleqALT 3313* | Alternate proof of raleleq 3312 using ralel 3063, being longer and using more axioms. (Contributed by AV, 30-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | raleqbidv 3314* | Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2134, ax-11 2151, and ax-12 2168 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | rexeqbidv 3315* | Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2134, ax-11 2151, and ax-12 2168 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | raleqbidva 3316* | Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | rexeqbidva 3317* | Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | cbvraldva2 3318* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | cbvrexdva2 3319* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 8-Jan-2025.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | cbvrexdva2OLD 3320* | Obsolete version of cbvrexdva2 3319 as of 8-Jan-2025. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 12-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | cbvraldva 3321* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐴 𝜒)) | ||
Theorem | cbvrexdva 3322* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐴 𝜒)) | ||
Theorem | raleqf 3323 | Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See raleq 3304 for a version based on fewer axioms. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | rexeqf 3324 | Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See rexeq 3305 for a version based on fewer axioms. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | raleqbid 3325 | Equality deduction for restricted universal quantifier. See raleqbidv 3314 for a version based on fewer axioms. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | rexeqbid 3326 | Equality deduction for restricted existential quantifier. See rexeqbidv 3315 for a version based on fewer axioms. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐵 𝜒)) | ||
Theorem | sbralie 3327* | Implicit to explicit substitution that swaps variables in a rectrictedly universally quantified expression. (Contributed by NM, 5-Sep-2004.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑦 / 𝑥]∀𝑦 ∈ 𝑥 𝜓) | ||
Theorem | rgen2a 3328* | Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2448. This theorem relies on the full set of axioms up to ax-ext 2706 and it should no longer be used. Usage of rgen2 3189 is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfrald 3329 | Deduction version of nfral 3331. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker nfraldw 3287 when possible. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfrexd 3330 | Deduction version of nfrex 3332. Usage of this theorem is discouraged because it depends on ax-13 2369. See nfrexdw 3288 for a version with a disjoint variable condition, but not requiring ax-13 2369. (Contributed by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfral 3331 | Bound-variable hypothesis builder for restricted quantification. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker nfralw 3289 when possible. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfrex 3332 | Bound-variable hypothesis builder for restricted quantification. Usage of this theorem is discouraged because it depends on ax-13 2369. See nfrexw 3291 for a version with a disjoint variable condition, but not requiring ax-13 2369. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfra2 3333* | Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 42706. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker nfra2w 3277 when possible. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | ||
Theorem | ralcom2 3334* | Commutation of restricted universal quantifiers. Note that 𝑥 and 𝑦 need not be disjoint (this makes the proof longer). This theorem relies on the full set of axioms up to ax-ext 2706 and it should no longer be used. Usage of ralcom 3267 is highly encouraged. (Contributed by NM, 24-Nov-1994.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) (New usage is discouraged.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | cbvralf 3335 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker cbvralfw 3282 when possible. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrexf 3336 | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker cbvrexfw 3283 when possible. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
Syntax | wreu 3337 | Extend wff notation to include restricted existential uniqueness. |
wff ∃!𝑥 ∈ 𝐴 𝜑 | ||
Syntax | wrmo 3338 | Extend wff notation to include restricted "at most one". |
wff ∃*𝑥 ∈ 𝐴 𝜑 | ||
Definition | df-rmo 3339 |
Define restricted "at most one".
Note: This notation is most often used to express that 𝜑 holds for at most one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert at most one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3061). (Contributed by NM, 16-Jun-2017.) |
⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Definition | df-reu 3340 |
Define restricted existential uniqueness.
Note: This notation is most often used to express that 𝜑 holds for exactly one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert exactly one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3061). (Contributed by NM, 22-Nov-1994.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | reu5 3341 | Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | reurmo 3342 | Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | reurex 3343 | Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) | ||
Theorem | mormo 3344 | Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rmoanid 3345 | Cancellation law for restricted at-most-one quantification. (Contributed by Peter Mazsa, 24-May-2018.) |
⊢ (∃*𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | reuanid 3346 | Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018.) |
⊢ (∃!𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rmobiia 3347 | Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reubiia 3348 | Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 14-Nov-2004.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) | ||
Theorem | rmobii 3349 | Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) | ||
Theorem | reubii 3350 | Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜓) | ||
Theorem | 2reu2rex 3351 | Double restricted existential uniqueness, analogous to 2eu2ex 2642. (Contributed by Alexander van der Vekens, 25-Jun-2017.) |
⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | ||
Theorem | rmobidva 3352* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) Avoid ax-6 1968, ax-7 2008, ax-12 2168. (Revised by Wolf Lammen, 23-Nov-2024.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | reubidva 3353* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rmobidv 3354* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | reubidv 3355* | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) | ||
Syntax | crab 3356 | Extend class notation to include the restricted class abstraction (class builder). |
class {𝑥 ∈ 𝐴 ∣ 𝜑} | ||
Definition | df-rab 3357 |
Define a restricted class abstraction (class builder): {𝑥 ∈ 𝐴 ∣ 𝜑}
is the class of all sets 𝑥 in 𝐴 such that 𝜑(𝑥) is true.
Definition of [TakeutiZaring] p.
20.
For the interpretation given in the previous paragraph to be correct, we need to assume Ⅎ𝑥𝐴, which is the case as soon as 𝑥 and 𝐴 are disjoint, which is generally the case. If 𝐴 were to depend on 𝑥, then the interpretation would be less obvious (think of the two extreme cases 𝐴 = {𝑥} and 𝐴 = 𝑥, for instance). See also df-ral 3061. (Contributed by NM, 22-Nov-1994.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | ||
Theorem | nfreu1 3358 | The setvar 𝑥 is not free in ∃!𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) |
⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 | ||
Theorem | nfrmo1 3359 | The setvar 𝑥 is not free in ∃*𝑥 ∈ 𝐴𝜑. (Contributed by NM, 16-Jun-2017.) |
⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝜑 | ||
Theorem | nfreud 3360 | Deduction version of nfreu 3366. Usage of this theorem is discouraged because it depends on ax-13 2369. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfrmod 3361 | Deduction version of nfrmo 3367. Usage of this theorem is discouraged because it depends on ax-13 2369. (Contributed by NM, 17-Jun-2017.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜓) | ||
Theorem | nfrmow 3362* | Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo 3367 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-9 2113, ax-ext 2706. (Revised by Wolf Lammen, 21-Nov-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfreuw 3363* | Bound-variable hypothesis builder for restricted unique existence. Version of nfreu 3366 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by NM, 30-Oct-2010.) (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-9 2113, ax-ext 2706. (Revised by Wolf Lammen, 21-Nov-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfreuwOLD 3364* | Obsolete version of nfreuw 3363 as of 21-Nov-2024. (Contributed by NM, 30-Oct-2010.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfrmowOLD 3365* | Obsolete version of nfrmow 3362 as of 21-Nov-2024. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfreu 3366 | Bound-variable hypothesis builder for restricted unique existence. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker nfreuw 3363 when possible. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 | ||
Theorem | nfrmo 3367 | Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker nfrmow 3362 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 | ||
Theorem | rabid 3368 | An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.) |
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | rabrab 3369 | Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017.) |
⊢ {𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | rabidim1 3370 | Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) | ||
Theorem | rabid2f 3371 | An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rabid2 3372* | An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2024.) |
⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rabid2OLD 3373* | Obsolete version of rabid2 3372 as of 24-11-2024. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rabbi 3374 | Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 3419. (Contributed by NM, 25-Nov-2013.) |
⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | nfrab1 3375 | The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} | ||
Theorem | nfrabw 3376* | A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3378 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by NM, 13-Oct-2003.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} | ||
Theorem | nfrabwOLD 3377* | Obsolete version of nfrabw 3376 as of 23-Nov2024. (Contributed by NM, 13-Oct-2003.) (Revised by Gino Giotto, 10-Jan-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} | ||
Theorem | nfrab 3378 | A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker nfrabw 3376 when possible. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} | ||
Theorem | reubida 3379 | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rmobida 3380 | Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | rmobidvaOLD 3381* | Obsolete version of rmobidv 3354 as of 23-Nov-2024. (Contributed by NM, 16-Jun-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜒)) | ||
Theorem | reueq1f 3382 | Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | rmoeq1f 3383 | Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | reueq1 3384* | Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2134, ax-11 2151, and ax-12 2168. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | rmoeq1 3385* | Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) Remove usage of ax-10 2134, ax-11 2151, and ax-12 2168. (Revised by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | reueqd 3386* | Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | rmoeqd 3387* | Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | moel 3388* | "At most one" element in a set. (Contributed by Thierry Arnoux, 26-Jul-2018.) Avoid ax-11 2151. (Revised by Wolf Lammen, 23-Nov-2024.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) | ||
Theorem | moelOLD 3389* | Obsolete version of moel 3388 as of 23-Nov-2024. (Contributed by Thierry Arnoux, 26-Jul-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) | ||
Theorem | rmo5 3390 | Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.) |
⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | nrexrmo 3391 | Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.) |
⊢ (¬ ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) | ||
Theorem | reueubd 3392* | Restricted existential uniqueness is equivalent to existential uniqueness if the unique element is in the restricting class. (Contributed by AV, 4-Jan-2021.) |
⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃!𝑥 ∈ 𝑉 𝜓 ↔ ∃!𝑥𝜓)) | ||
Theorem | cbvrmow 3393* | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo 3400 with a disjoint variable condition, which does not require ax-10 2134, ax-13 2369. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 23-May-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvreuw 3394* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 3399 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-10 2134. (Revised by Wolf Lammen, 10-Dec-2024.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvreuwOLD 3395* | Obsolete version of cbvreuw 3394 as of 10-Dec-2024. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by Gino Giotto, 10-Jan-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrmowOLD 3396* | Obsolete version of cbvrmow 3393 as of 23-May-2024. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvral 3397* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker cbvralw 3284 when possible. (Contributed by NM, 31-Jul-2003.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrex 3398* | Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker cbvrexw 3285 when possible. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvreu 3399* | Change the bound variable of a restricted unique existential quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker cbvreuw 3394 when possible. (Contributed by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | ||
Theorem | cbvrmo 3400* | Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2369. Use the weaker cbvrmow 3393, cbvrmovw 3401 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |