Home Metamath Proof ExplorerTheorem List (p. 34 of 453) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-28710) Hilbert Space Explorer (28711-30233) Users' Mathboxes (30234-45286)

Theorem List for Metamath Proof Explorer - 3301-3400   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremnfrex 3301* Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) Add disjoint variable condition to avoid ax-13 2392. See nfrexg 3302 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
𝑥𝐴    &   𝑥𝜑       𝑥𝑦𝐴 𝜑

Theoremnfrexg 3302 Bound-variable hypothesis builder for restricted quantification. Usage of this theorem is discouraged because it depends on ax-13 2392. See nfrex 3301 for a version with a disjoint variable condition, but not requiring ax-13 2392. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2019.) (New usage is discouraged.)
𝑥𝐴    &   𝑥𝜑       𝑥𝑦𝐴 𝜑

Theoremreximdai 3303 Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.)
𝑥𝜑    &   (𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))

Theoremreximd2a 3304 Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020.)
𝑥𝜑    &   (((𝜑𝑥𝐴) ∧ 𝜓) → 𝑥𝐵)    &   (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑 → ∃𝑥𝐵 𝜒)

Theoremr19.23t 3305 Closed theorem form of r19.23 3306. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
(Ⅎ𝑥𝜓 → (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))

Theoremr19.23 3306 Restricted quantifier version of 19.23 2213. See r19.23v 3271 for a version requiring fewer axioms. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.)
𝑥𝜓       (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))

Theoremrexlimi 3307 Restricted quantifier version of exlimi 2219. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
𝑥𝜓    &   (𝑥𝐴 → (𝜑𝜓))       (∃𝑥𝐴 𝜑𝜓)

Theoremrexlimd2 3308 Version of rexlimd 3309 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))

Theoremrexlimd 3309 Deduction form of rexlimd 3309. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 14-Jan-2020.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))

Theoremrexbida 3310 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))

TheoremrexbidvaALT 3311* Alternate proof of rexbidva 3288, shorter but requires more axioms. (Contributed by NM, 9-Mar-1997.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))

Theoremrexbid 3312 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))

TheoremrexbidvALT 3313* Alternate proof of rexbidv 3289, shorter but requires more axioms. (Contributed by NM, 20-Nov-1994.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))

Theoremralrexbid 3314 Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023.) Reduce axiom usage. (Revised by SN, 13-Nov-2023.)
(𝜑 → (𝜓𝜃))       (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜃))

TheoremralrexbidOLD 3315 Obsolete version of ralrexbid 3314 as of 13-Nov-2023. (Contributed by AV, 21-Oct-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜃))       (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜃))

Theoremr19.12 3316* Restricted quantifier version of 19.12 2348. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Avoid ax-13 2392, ax-ext 2796. (Revised by Wolf Lammen, 17-Jun-2023.)
(∃𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴 𝜑)

Theoremr2exf 3317* Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2exlem 3294. (Revised by Wolf Lammen, 10-Jan-2020.)
𝑦𝐴       (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))

Theoremrexeqbii 3318 Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
𝐴 = 𝐵    &   (𝜓𝜒)       (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒)

Theoremreuanid 3319 Cancellation law for restricted unique existential quantification. (Contributed by Peter Mazsa, 12-Feb-2018.)
(∃!𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃!𝑥𝐴 𝜑)

Theoremrmoanid 3320 Cancellation law for restricted at-most-one quantification. (Contributed by Peter Mazsa, 24-May-2018.)
(∃*𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃*𝑥𝐴 𝜑)

Theoremr19.29af2 3321 A commonly used pattern based on r19.29 3248. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Proof shortened by OpenAI, 25-Mar-2020.)
𝑥𝜑    &   𝑥𝜒    &   (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑𝜒)

Theoremr19.29af 3322* A commonly used pattern based on r19.29 3248. See r19.29a 3281, r19.29an 3280 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.)
𝑥𝜑    &   (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑𝜒)

Theoremr19.29anOLD 3323* Obsolete version of r19.29an 3280 as of 17-Jun-2023. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)       ((𝜑 ∧ ∃𝑥𝐴 𝜓) → 𝜒)

Theoremr19.29aOLD 3324* Obsolete proof of r19.29a 3281 as of 17-Jun-2023. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑𝜒)

Theorem2r19.29 3325 Theorem r19.29 3248 with two quantifiers. (Contributed by Rodolfo Medina, 25-Sep-2010.)
((∀𝑥𝐴𝑦𝐵 𝜑 ∧ ∃𝑥𝐴𝑦𝐵 𝜓) → ∃𝑥𝐴𝑦𝐵 (𝜑𝜓))

Theoremr19.29d2r 3326 Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017.)
(𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)    &   (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)       (𝜑 → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))

Theoremr19.29vva 3327* A commonly used pattern based on r19.29 3248, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof shortened by Wolf Lammen, 29-Jun-2023.)
((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)       (𝜑𝜒)

Theoremr19.29vvaOLD 3328* Obsolete version of r19.29vva 3327 as of 28-Jun-2023. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)       (𝜑𝜒)

Theoremr19.30 3329 Restricted quantifier version of 19.30 1883. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.)
(∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))

Theoremr19.30OLD 3330 Obsolete version of r19.30 3329 as of 18-Jun-2023. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))

Theoremr19.32v 3331* Restricted quantifier version of 19.32v 1942. (Contributed by NM, 25-Nov-2003.)
(∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝐴 𝜓))

Theoremr19.35 3332 Restricted quantifier version of 19.35 1879. (Contributed by NM, 20-Sep-2003.)
(∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))

Theoremr19.36v 3333* Restricted quantifier version of one direction of 19.36 2234. (The other direction holds iff 𝐴 is nonempty, see r19.36zv 4435.) (Contributed by NM, 22-Oct-2003.)
(∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑𝜓))

Theoremr19.37 3334 Restricted quantifier version of one direction of 19.37 2236. (The other direction does not hold when 𝐴 is empty.) (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑥𝜑       (∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))

Theoremr19.37v 3335* Restricted quantifier version of one direction of 19.37v 1999. (The other direction holds iff 𝐴 is nonempty, see r19.37zv 4430.) (Contributed by NM, 2-Apr-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 18-Jun-2023.)
(∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))

Theoremr19.37vOLD 3336* Obsolete version of r19.37v 3335 as of 18-Jun-2023. (Contributed by NM, 2-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
(∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))

Theoremr19.40 3337 Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓))

Theoremr19.41v 3338* Restricted quantifier version 19.41v 1951. Version of r19.41 3339 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003.) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020.)
(∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))

Theoremr19.41 3339 Restricted quantifier version of 19.41 2239. See r19.41v 3338 for a version with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 1-Nov-2010.)
𝑥𝜓       (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))

Theoremr19.41vv 3340* Version of r19.41v 3338 with two quantifiers. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴𝑦𝐵 𝜑𝜓))

Theoremr19.42v 3341* Restricted quantifier version of 19.42v 1955 (see also 19.42 2240). (Contributed by NM, 27-May-1998.)
(∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝐴 𝜓))

Theoremr19.43 3342 Restricted quantifier version of 19.43 1884. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))

Theoremr19.44v 3343* One direction of a restricted quantifier version of 19.44 2241. The other direction holds when 𝐴 is nonempty, see r19.44zv 4432. (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑𝜓))

Theoremr19.45v 3344* Restricted quantifier version of one direction of 19.45 2242. The other direction holds when 𝐴 is nonempty, see r19.45zv 4431. (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (𝜑 ∨ ∃𝑥𝐴 𝜓))

Theoremralcom 3345* Commutation of restricted universal quantifiers. See ralcom2 3354 for a version without disjoint variable condition on 𝑥, 𝑦. This theorem should be used in place of ralcom2 3354 since it depends on a smaller set of axioms. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
(∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)

Theoremrexcom 3346* Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.)
(∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)

TheoremrexcomOLD 3347* Obsolete version of rexcom 3346 as of 26-Aug-2023. Commutation of restricted existential quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)

Theoremralcomf 3348* Commutation of restricted universal quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
𝑦𝐴    &   𝑥𝐵       (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)

Theoremrexcomf 3349* Commutation of restricted existential quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
𝑦𝐴    &   𝑥𝐵       (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)

Theoremralcom13 3350* Swap first and third restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.)
(∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)

Theoremrexcom13 3351* Swap first and third restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.)
(∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)

Theoremralrot3 3352* Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021.)
(∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝜑)

Theoremrexrot4 3353* Rotate four restricted existential quantifiers twice. (Contributed by NM, 8-Apr-2015.)
(∃𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑)

Theoremralcom2 3354* Commutation of restricted universal quantifiers. Note that 𝑥 and 𝑦 need not be disjoint (this makes the proof longer). This theorem relies on the full set of axioms up to ax-ext 2796 and it should no longer be used. Usage of ralcom 3345 is highly encouraged. (Contributed by NM, 24-Nov-1994.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) (New usage is discouraged.)
(∀𝑥𝐴𝑦𝐴 𝜑 → ∀𝑦𝐴𝑥𝐴 𝜑)

Theoremralcom3 3355 A commutation law for restricted universal quantifiers that swaps the domains of the restriction. (Contributed by NM, 22-Feb-2004.)
(∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥𝐵 (𝑥𝐴𝜑))

Theoremreeanlem 3356* Lemma factoring out common proof steps of reeanv 3358 and reean 3357. (Contributed by Wolf Lammen, 20-Aug-2023.)
(∃𝑥𝑦((𝑥𝐴𝜑) ∧ (𝑦𝐵𝜓)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦(𝑦𝐵𝜓)))       (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))

Theoremreean 3357* Rearrange restricted existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.)
𝑦𝜑    &   𝑥𝜓       (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))

Theoremreeanv 3358* Rearrange restricted existential quantifiers. (Contributed by NM, 9-May-1999.)
(∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))

Theorem3reeanv 3359* Rearrange three restricted existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
(∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓 ∧ ∃𝑧𝐶 𝜒))

Theorem2ralor 3360* Distribute restricted universal quantification over "or". (Contributed by Jeff Madsen, 19-Jun-2010.)
(∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∨ ∀𝑦𝐵 𝜓))

Theoremnfreu1 3361 The setvar 𝑥 is not free in ∃!𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.)
𝑥∃!𝑥𝐴 𝜑

Theoremnfrmo1 3362 The setvar 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
𝑥∃*𝑥𝐴 𝜑

Theoremnfreud 3363 Deduction version of nfreu 3367. Usage of this theorem is discouraged because it depends on ax-13 2392. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)

Theoremnfrmod 3364 Deduction version of nfrmo 3368. Usage of this theorem is discouraged because it depends on ax-13 2392. (Contributed by NM, 17-Jun-2017.) (New usage is discouraged.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃*𝑦𝐴 𝜓)

Theoremnfreuw 3365* Bound-variable hypothesis builder for restricted unique existence. Version of nfreu 3367 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by NM, 30-Oct-2010.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑥𝐴    &   𝑥𝜑       𝑥∃!𝑦𝐴 𝜑

Theoremnfrmow 3366* Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo 3368 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑥𝐴    &   𝑥𝜑       𝑥∃*𝑦𝐴 𝜑

Theoremnfreu 3367 Bound-variable hypothesis builder for restricted unique existence. Usage of this theorem is discouraged because it depends on ax-13 2392. Use the weaker nfreuw 3365 when possible. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.)
𝑥𝐴    &   𝑥𝜑       𝑥∃!𝑦𝐴 𝜑

Theoremnfrmo 3368 Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2392. Use the weaker nfrmow 3366 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.)
𝑥𝐴    &   𝑥𝜑       𝑥∃*𝑦𝐴 𝜑

Theoremrabid 3369 An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.)
(𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))

Theoremrabrab 3370 Abstract builder restricted to another restricted abstract builder. (Contributed by Thierry Arnoux, 30-Aug-2017.)
{𝑥 ∈ {𝑥𝐴𝜑} ∣ 𝜓} = {𝑥𝐴 ∣ (𝜑𝜓)}

Theoremrabidim1 3371 Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)

Theoremrabid2 3372* An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)

Theoremrabid2f 3373 An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.)
𝑥𝐴       (𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)

Theoremrabbi 3374 Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 3463. (Contributed by NM, 25-Nov-2013.)
(∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Theoremnfrab1 3375 The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
𝑥{𝑥𝐴𝜑}

Theoremnfrabw 3376* A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3377 with a disjoint variable condition, which does not require ax-13 2392. (Contributed by NM, 13-Oct-2003.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑥𝜑    &   𝑥𝐴       𝑥{𝑦𝐴𝜑}

Theoremnfrab 3377 A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 2392. Use the weaker nfrabw 3376 when possible. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.) (New usage is discouraged.)
𝑥𝜑    &   𝑥𝐴       𝑥{𝑦𝐴𝜑}

Theoremreubida 3378 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))

Theoremreubidva 3379* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004.) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))

Theoremreubidv 3380* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))

Theoremreubiia 3381 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 14-Nov-2004.)
(𝑥𝐴 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)

Theoremreubii 3382 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.)
(𝜑𝜓)       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)

Theoremrmobida 3383 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))

Theoremrmobidva 3384* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))

Theoremrmobidv 3385* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))

Theoremrmobiia 3386 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
(𝑥𝐴 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)

Theoremrmobii 3387 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
(𝜑𝜓)       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)

Theoremraleqf 3388 Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))

Theoremrexeqf 3389 Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))

Theoremreueq1f 3390 Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))

Theoremrmoeq1f 3391 Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))

Theoremraleqbidv 3392* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2146, ax-11 2162, and ax-12 2179 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))

Theoremrexeqbidv 3393* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) Remove usage of ax-10 2146, ax-11 2162, and ax-12 2179 and reduce distinct variable conditions. (Revised by Steven Nguyen, 30-Apr-2023.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))

Theoremraleqbi1dv 3394* Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓))

Theoremrexeqbi1dv 3395* Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.) (Proof shortened by Steven Nguyen, 5-May-2023.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))

Theoremraleq 3396* Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) Remove usage of ax-10 2146, ax-11 2162, and ax-12 2179. (Revised by Steven Nguyen, 30-Apr-2023.)
(𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))

Theoremrexeq 3397* Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) Remove usage of ax-10 2146, ax-11 2162, and ax-12 2179. (Revised by Steven Nguyen, 30-Apr-2023.)
(𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))

Theoremreueq1 3398* Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2146, ax-11 2162, and ax-12 2179. (Revised by Steven Nguyen, 30-Apr-2023.)
(𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))

Theoremrmoeq1 3399* Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) Remove usage of ax-10 2146, ax-11 2162, and ax-12 2179. (Revised by Steven Nguyen, 30-Apr-2023.)
(𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))

Theoremraleqi 3400* Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐴 = 𝐵       (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45286
 Copyright terms: Public domain < Previous  Next >