MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqf Structured version   Visualization version   GIF version

Theorem raleqf 3350
Description: Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See raleq 3323 for a version based on fewer axioms. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
raleqf.1 𝑥𝐴
raleqf.2 𝑥𝐵
Assertion
Ref Expression
raleqf (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))

Proof of Theorem raleqf
StepHypRef Expression
1 raleqf.1 . . . 4 𝑥𝐴
2 raleqf.2 . . . 4 𝑥𝐵
31, 2nfeq 2917 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2823 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54imbi1d 342 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5albid 2216 . 2 (𝐴 = 𝐵 → (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵𝜑)))
7 df-ral 3063 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
8 df-ral 3063 . 2 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540   = wceq 1542  wcel 2107  wnfc 2884  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063
This theorem is referenced by:  rexeqf  3351  raleqbid  3353  dfon2lem3  34757  indexa  36601  ralbi12f  37028  iineq12f  37032  ac6s6f  37041  raleqd  43826  stoweidlem28  44744  stoweidlem52  44768  fourierdlem31  44854  fourierdlem68  44890  fourierdlem103  44925  fourierdlem104  44926
  Copyright terms: Public domain W3C validator