Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqf | Structured version Visualization version GIF version |
Description: Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
raleq1f.1 | ⊢ Ⅎ𝑥𝐴 |
raleq1f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
raleqf | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | raleq1f.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2919 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
4 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 4 | imbi1d 341 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑥 ∈ 𝐵 → 𝜑))) |
6 | 3, 5 | albid 2218 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
7 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
8 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
9 | 6, 7, 8 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 |
This theorem is referenced by: raleqbid 3343 dfon2lem3 33667 indexa 35818 ralbi12f 36245 iineq12f 36249 ac6s6f 36258 raleqd 42575 stoweidlem28 43459 stoweidlem52 43483 fourierdlem31 43569 fourierdlem68 43605 fourierdlem103 43640 fourierdlem104 43641 |
Copyright terms: Public domain | W3C validator |