MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqf Structured version   Visualization version   GIF version

Theorem raleqf 3361
Description: Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See raleq 3331 for a version based on fewer axioms. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
raleqf.1 𝑥𝐴
raleqf.2 𝑥𝐵
Assertion
Ref Expression
raleqf (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))

Proof of Theorem raleqf
StepHypRef Expression
1 raleqf.1 . . . 4 𝑥𝐴
2 raleqf.2 . . . 4 𝑥𝐵
31, 2nfeq 2922 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2833 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54imbi1d 341 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5albid 2223 . 2 (𝐴 = 𝐵 → (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵𝜑)))
7 df-ral 3068 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
8 df-ral 3068 . 2 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2108  wnfc 2893  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068
This theorem is referenced by:  rexeqf  3362  raleqbid  3364  dfon2lem3  35749  indexa  37693  ralbi12f  38120  iineq12f  38124  ac6s6f  38133  raleqd  45039  stoweidlem28  45949  stoweidlem52  45973  fourierdlem31  46059  fourierdlem68  46095  fourierdlem103  46130  fourierdlem104  46131
  Copyright terms: Public domain W3C validator