MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqf Structured version   Visualization version   GIF version

Theorem raleqf 3321
Description: Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. See raleq 3289 for a version based on fewer axioms. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
raleqf.1 𝑥𝐴
raleqf.2 𝑥𝐵
Assertion
Ref Expression
raleqf (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))

Proof of Theorem raleqf
StepHypRef Expression
1 raleqf.1 . . . 4 𝑥𝐴
2 raleqf.2 . . . 4 𝑥𝐵
31, 2nfeq 2908 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2820 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54imbi1d 341 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5albid 2225 . 2 (𝐴 = 𝐵 → (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵𝜑)))
7 df-ral 3048 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
8 df-ral 3048 . 2 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2111  wnfc 2879  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048
This theorem is referenced by:  rexeqf  3322  raleqbid  3324  dfon2lem3  35827  indexa  37772  ralbi12f  38199  iineq12f  38203  ac6s6f  38212  raleqd  45233  stoweidlem28  46125  stoweidlem52  46149  fourierdlem31  46235  fourierdlem68  46271  fourierdlem103  46306  fourierdlem104  46307
  Copyright terms: Public domain W3C validator