Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-rex | Structured version Visualization version GIF version |
Description: Define restricted
existential quantification. Special case of Definition
4.15(4) of [TakeutiZaring] p. 22.
Note: This notation is most often used to express that 𝜑 holds for at least one element of a given class 𝐴. For this reading Ⅎ𝑥𝐴 is required, though, for example, asserted when 𝑥 and 𝐴 are disjoint. Should instead 𝐴 depend on 𝑥, you rather assert at least one 𝑥 fulfilling 𝜑 happens to be contained in the corresponding 𝐴(𝑥). This interpretation is rarely needed (see also df-ral 3069). (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
df-rex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wrex 3065 | . 2 wff ∃𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1542 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2112 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 399 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | wex 1787 | . 2 wff ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 209 | 1 wff (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Copyright terms: Public domain | W3C validator |