Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > barocoALT | Structured version Visualization version GIF version |
Description: Alternate proof of festino 2675, shorter but using more axioms. See comment of dariiALT 2667. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
baroco.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
baroco.min | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) |
Ref | Expression |
---|---|
barocoALT | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baroco.min | . 2 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜓) | |
2 | baroco.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → 𝜓) | |
3 | 2 | spi 2177 | . . . 4 ⊢ (𝜑 → 𝜓) |
4 | 3 | con3i 154 | . . 3 ⊢ (¬ 𝜓 → ¬ 𝜑) |
5 | 4 | anim2i 617 | . 2 ⊢ ((𝜒 ∧ ¬ 𝜓) → (𝜒 ∧ ¬ 𝜑)) |
6 | 1, 5 | eximii 1839 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |