MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel4OLD Structured version   Visualization version   GIF version

Theorem clel4OLD 3588
Description: Obsolete version of clel4 3587 as of 1-Sep-2024. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
clel4.1 𝐵 ∈ V
Assertion
Ref Expression
clel4OLD (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem clel4OLD
StepHypRef Expression
1 clel4.1 . . 3 𝐵 ∈ V
2 eleq2 2827 . . 3 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
31, 2ceqsalv 3457 . 2 (∀𝑥(𝑥 = 𝐵𝐴𝑥) ↔ 𝐴𝐵)
43bicomi 223 1 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator