MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel4 Structured version   Visualization version   GIF version

Theorem clel4 3587
Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel4.1 𝐵 ∈ V
Assertion
Ref Expression
clel4 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem clel4
StepHypRef Expression
1 clel4.1 . 2 𝐵 ∈ V
2 clel4g 3586 . 2 (𝐵 ∈ V → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥)))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by:  intprOLD  4911
  Copyright terms: Public domain W3C validator