Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clel4 | Structured version Visualization version GIF version |
Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
clel4.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
clel4 | ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel4.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | clel4g 3586 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: intprOLD 4911 |
Copyright terms: Public domain | W3C validator |