MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel4 Structured version   Visualization version   GIF version

Theorem clel4 3586
Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel4.1 𝐵 ∈ V
Assertion
Ref Expression
clel4 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem clel4
StepHypRef Expression
1 clel4.1 . 2 𝐵 ∈ V
2 clel4g 3585 . 2 (𝐵 ∈ V → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥)))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1541   = wceq 1543  wcel 2112  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818
This theorem is referenced by:  intprOLD  4910
  Copyright terms: Public domain W3C validator