MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel5 Structured version   Visualization version   GIF version

Theorem clel5 3664
Description: Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) Remove use of ax-10 2140, ax-11 2156, and ax-12 2176. (Revised by Steven Nguyen, 19-May-2023.)
Assertion
Ref Expression
clel5 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem clel5
StepHypRef Expression
1 risset 3232 . 2 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑋)
2 eqcom 2743 . . 3 (𝑥 = 𝑋𝑋 = 𝑥)
32rexbii 3093 . 2 (∃𝑥𝐴 𝑥 = 𝑋 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
41, 3bitri 275 1 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  wrex 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2728  df-clel 2815  df-rex 3070
This theorem is referenced by:  dfss5  4274  iunid  5059  4fvwrd4  13689  wrdlen1  14593  phisum  16829  symgmov1  19405  n0s0suc  28346  disjunsn  32608  rp-abid  43396
  Copyright terms: Public domain W3C validator