![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clel5 | Structured version Visualization version GIF version |
Description: Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) Remove use of ax-10 2139, ax-11 2155, and ax-12 2175. (Revised by Steven Nguyen, 19-May-2023.) |
Ref | Expression |
---|---|
clel5 | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3231 | . 2 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑋) | |
2 | eqcom 2742 | . . 3 ⊢ (𝑥 = 𝑋 ↔ 𝑋 = 𝑥) | |
3 | 2 | rexbii 3092 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = 𝑋 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 df-rex 3069 |
This theorem is referenced by: dfss5 4281 iunid 5065 4fvwrd4 13685 wrdlen1 14589 phisum 16824 symgmov1 19419 n0s0suc 28360 disjunsn 32614 rp-abid 43368 |
Copyright terms: Public domain | W3C validator |