![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clel5 | Structured version Visualization version GIF version |
Description: Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) Remove use of ax-10 2137, ax-11 2154, and ax-12 2171. (Revised by Steven Nguyen, 19-May-2023.) |
Ref | Expression |
---|---|
clel5 | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3230 | . 2 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑋) | |
2 | eqcom 2739 | . . 3 ⊢ (𝑥 = 𝑋 ↔ 𝑋 = 𝑥) | |
3 | 2 | rexbii 3094 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = 𝑋 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-clel 2810 df-rex 3071 |
This theorem is referenced by: dfss5 4264 iunid 5063 4fvwrd4 13623 wrdlen1 14506 phisum 16725 symgmov1 19256 disjunsn 31863 rp-abid 42216 |
Copyright terms: Public domain | W3C validator |