MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel5 Structured version   Visualization version   GIF version

Theorem clel5 3589
Description: Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) Remove use of ax-10 2139, ax-11 2156, and ax-12 2173. (Revised by Steven Nguyen, 19-May-2023.)
Assertion
Ref Expression
clel5 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem clel5
StepHypRef Expression
1 risset 3193 . 2 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑋)
2 eqcom 2745 . . 3 (𝑥 = 𝑋𝑋 = 𝑥)
32rexbii 3177 . 2 (∃𝑥𝐴 𝑥 = 𝑋 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
41, 3bitri 274 1 (𝑋𝐴 ↔ ∃𝑥𝐴 𝑋 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817  df-rex 3069
This theorem is referenced by:  dfss5  4195  4fvwrd4  13305  wrdlen1  14185  phisum  16419  symgmov1  18909  disjunsn  30834
  Copyright terms: Public domain W3C validator