| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clel5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) Remove use of ax-10 2140, ax-11 2156, and ax-12 2176. (Revised by Steven Nguyen, 19-May-2023.) |
| Ref | Expression |
|---|---|
| clel5 | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset 3232 | . 2 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑋) | |
| 2 | eqcom 2743 | . . 3 ⊢ (𝑥 = 𝑋 ↔ 𝑋 = 𝑥) | |
| 3 | 2 | rexbii 3093 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = 𝑋 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 df-rex 3070 |
| This theorem is referenced by: dfss5 4274 iunid 5059 4fvwrd4 13689 wrdlen1 14593 phisum 16829 symgmov1 19405 n0s0suc 28346 disjunsn 32608 rp-abid 43396 |
| Copyright terms: Public domain | W3C validator |