Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clel5 | Structured version Visualization version GIF version |
Description: Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) Remove use of ax-10 2139, ax-11 2156, and ax-12 2173. (Revised by Steven Nguyen, 19-May-2023.) |
Ref | Expression |
---|---|
clel5 | ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3193 | . 2 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑋) | |
2 | eqcom 2745 | . . 3 ⊢ (𝑥 = 𝑋 ↔ 𝑋 = 𝑥) | |
3 | 2 | rexbii 3177 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = 𝑋 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-rex 3069 |
This theorem is referenced by: dfss5 4195 4fvwrd4 13305 wrdlen1 14185 phisum 16419 symgmov1 18909 disjunsn 30834 |
Copyright terms: Public domain | W3C validator |