MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalv Structured version   Visualization version   GIF version

Theorem ceqsalv 3510
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2169. (Revised by SN, 8-Sep-2024.)
Hypotheses
Ref Expression
ceqsalv.1 𝐴 ∈ V
ceqsalv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsalv (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsalv
StepHypRef Expression
1 19.23v 1943 . 2 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
2 ceqsalv.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
32pm5.74i 270 . . 3 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
43albii 1819 . 2 (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓))
5 ceqsalv.1 . . . 4 𝐴 ∈ V
65isseti 3488 . . 3 𝑥 𝑥 = 𝐴
76a1bi 361 . 2 (𝜓 ↔ (∃𝑥 𝑥 = 𝐴𝜓))
81, 4, 73bitr4i 302 1 (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1779  wcel 2104  Vcvv 3472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-clel 2808
This theorem is referenced by:  ceqsexv  3524  ralxpxfr2d  3633  clel4OLD  3653  frsn  5762  raliunxp  5838  idrefALT  6111  funimass4  6955  fnssintima  7361  imaeqalov  7648  marypha2lem3  9434  kmlem12  10158  vdwmc2  16916  itg2leub  25484  eqscut2  27544  addsuniflem  27723  mulsuniflem  27843  nmoubi  30292  choc0  30846  nmopub  31428  nmfnleub  31445  elintfv  35040  heibor1lem  36980  elmapintrab  42629
  Copyright terms: Public domain W3C validator