MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalv Structured version   Visualization version   GIF version

Theorem ceqsalv 3457
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2173. (Revised by SN, 8-Sep-2024.)
Hypotheses
Ref Expression
ceqsalv.1 𝐴 ∈ V
ceqsalv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsalv (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsalv
StepHypRef Expression
1 ceqsalv.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21pm5.74i 270 . . 3 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
32albii 1823 . 2 (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓))
4 19.23v 1946 . 2 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
5 ceqsalv.1 . . . 4 𝐴 ∈ V
65isseti 3437 . . 3 𝑥 𝑥 = 𝐴
7 pm5.5 361 . . 3 (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴𝜓) ↔ 𝜓))
86, 7ax-mp 5 . 2 ((∃𝑥 𝑥 = 𝐴𝜓) ↔ 𝜓)
93, 4, 83bitri 296 1 (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-clel 2817
This theorem is referenced by:  ralxpxfr2d  3568  clel4OLD  3588  frsn  5665  raliunxp  5737  idrefALT  6007  funimass4  6816  marypha2lem3  9126  kmlem12  9848  vdwmc2  16608  itg2leub  24804  nmoubi  29035  choc0  29589  nmopub  30171  nmfnleub  30188  fnssintima  33578  elintfv  33644  eqscut2  33927  heibor1lem  35894  elmapintrab  41073
  Copyright terms: Public domain W3C validator