![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsalv | Structured version Visualization version GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2178. (Revised by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
ceqsalv.1 | ⊢ 𝐴 ∈ V |
ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalv | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23v 1941 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
2 | ceqsalv.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
4 | 3 | albii 1817 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
5 | ceqsalv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
6 | 5 | isseti 3506 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 |
7 | 6 | a1bi 362 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
8 | 1, 4, 7 | 3bitr4i 303 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 |
This theorem is referenced by: ceqsexv 3542 ralxpxfr2d 3659 frsn 5787 raliunxp 5864 idrefALT 6143 funimass4 6986 fnssintima 7398 imaeqalov 7689 marypha2lem3 9506 kmlem12 10231 vdwmc2 17026 itg2leub 25789 eqscut2 27869 addsuniflem 28052 mulsuniflem 28193 nmoubi 30804 choc0 31358 nmopub 31940 nmfnleub 31957 elintfv 35728 heibor1lem 37769 elmapintrab 43538 |
Copyright terms: Public domain | W3C validator |