MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalv Structured version   Visualization version   GIF version

Theorem ceqsalv 3505
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2178. (Revised by SN, 8-Sep-2024.)
Hypotheses
Ref Expression
ceqsalv.1 𝐴 ∈ V
ceqsalv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsalv (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsalv
StepHypRef Expression
1 19.23v 1942 . 2 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
2 ceqsalv.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
32pm5.74i 271 . . 3 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
43albii 1819 . 2 (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓))
5 ceqsalv.1 . . . 4 𝐴 ∈ V
65isseti 3482 . . 3 𝑥 𝑥 = 𝐴
76a1bi 362 . 2 (𝜓 ↔ (∃𝑥 𝑥 = 𝐴𝜓))
81, 4, 73bitr4i 303 1 (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2810
This theorem is referenced by:  ceqsexv  3516  ralxpxfr2d  3630  frsn  5747  raliunxp  5824  idrefALT  6105  funimass4  6948  fnssintima  7360  imaeqalov  7651  marypha2lem3  9454  kmlem12  10181  vdwmc2  17004  itg2leub  25692  eqscut2  27775  addsuniflem  27965  mulsuniflem  28109  onsfi  28304  nmoubi  30758  choc0  31312  nmopub  31894  nmfnleub  31911  elintfv  35787  heibor1lem  37838  elmapintrab  43567
  Copyright terms: Public domain W3C validator