| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsalv | Structured version Visualization version GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2178. (Revised by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| ceqsalv.1 | ⊢ 𝐴 ∈ V |
| ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsalv | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23v 1942 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
| 2 | ceqsalv.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
| 5 | ceqsalv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 6 | 5 | isseti 3462 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 7 | 6 | a1bi 362 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
| 8 | 1, 4, 7 | 3bitr4i 303 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: ceqsexv 3495 ralxpxfr2d 3609 frsn 5719 raliunxp 5793 idrefALT 6072 funimass4 6907 fnssintima 7319 imaeqalov 7608 marypha2lem3 9364 kmlem12 10091 vdwmc2 16926 itg2leub 25668 eqscut2 27752 addsuniflem 27948 mulsuniflem 28092 onsfi 28287 nmoubi 30751 choc0 31305 nmopub 31887 nmfnleub 31904 elintfv 35745 heibor1lem 37796 elmapintrab 43558 |
| Copyright terms: Public domain | W3C validator |