|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ceqsalv | Structured version Visualization version GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2176. (Revised by SN, 8-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| ceqsalv.1 | ⊢ 𝐴 ∈ V | 
| ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| ceqsalv | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.23v 1941 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
| 2 | ceqsalv.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) | 
| 4 | 3 | albii 1818 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) | 
| 5 | ceqsalv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 6 | 5 | isseti 3497 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 | 
| 7 | 6 | a1bi 362 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | 
| 8 | 1, 4, 7 | 3bitr4i 303 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3479 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-clel 2815 | 
| This theorem is referenced by: ceqsexv 3531 ralxpxfr2d 3645 frsn 5772 raliunxp 5849 idrefALT 6130 funimass4 6972 fnssintima 7383 imaeqalov 7673 marypha2lem3 9478 kmlem12 10203 vdwmc2 17018 itg2leub 25770 eqscut2 27852 addsuniflem 28035 mulsuniflem 28176 nmoubi 30792 choc0 31346 nmopub 31928 nmfnleub 31945 elintfv 35766 heibor1lem 37817 elmapintrab 43594 | 
| Copyright terms: Public domain | W3C validator |