Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsalv | Structured version Visualization version GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
ceqsalv.1 | ⊢ 𝐴 ∈ V |
ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalv | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | ceqsalv.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | ceqsalv.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | ceqsal 3447 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1536 = wceq 1538 ∈ wcel 2111 Vcvv 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-clel 2830 |
This theorem is referenced by: ralxpxfr2d 3557 clel4OLD 3577 frsn 5608 raliunxp 5679 idrefALT 5945 funimass4 6718 marypha2lem3 8934 kmlem12 9621 vdwmc2 16370 itg2leub 24434 nmoubi 28654 choc0 29208 nmopub 29790 nmfnleub 29807 fnssintima 33194 elintfv 33254 eqscut2 33561 heibor1lem 35527 elmapintrab 40649 |
Copyright terms: Public domain | W3C validator |