![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsalv | Structured version Visualization version GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2169. (Revised by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
ceqsalv.1 | ⊢ 𝐴 ∈ V |
ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalv | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23v 1943 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
2 | ceqsalv.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | pm5.74i 270 | . . 3 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
5 | ceqsalv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
6 | 5 | isseti 3488 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 |
7 | 6 | a1bi 361 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
8 | 1, 4, 7 | 3bitr4i 302 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1779 ∈ wcel 2104 Vcvv 3472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-clel 2808 |
This theorem is referenced by: ceqsexv 3524 ralxpxfr2d 3633 clel4OLD 3653 frsn 5762 raliunxp 5838 idrefALT 6111 funimass4 6955 fnssintima 7361 imaeqalov 7648 marypha2lem3 9434 kmlem12 10158 vdwmc2 16916 itg2leub 25484 eqscut2 27544 addsuniflem 27723 mulsuniflem 27843 nmoubi 30292 choc0 30846 nmopub 31428 nmfnleub 31445 elintfv 35040 heibor1lem 36980 elmapintrab 42629 |
Copyright terms: Public domain | W3C validator |