MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalv Structured version   Visualization version   GIF version

Theorem ceqsalv 3476
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2180. (Revised by SN, 8-Sep-2024.)
Hypotheses
Ref Expression
ceqsalv.1 𝐴 ∈ V
ceqsalv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsalv (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsalv
StepHypRef Expression
1 19.23v 1943 . 2 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
2 ceqsalv.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
32pm5.74i 271 . . 3 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
43albii 1820 . 2 (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓))
5 ceqsalv.1 . . . 4 𝐴 ∈ V
65isseti 3454 . . 3 𝑥 𝑥 = 𝐴
76a1bi 362 . 2 (𝜓 ↔ (∃𝑥 𝑥 = 𝐴𝜓))
81, 4, 73bitr4i 303 1 (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-clel 2806
This theorem is referenced by:  ceqsexv  3486  ralxpxfr2d  3596  frsn  5702  raliunxp  5778  idrefALT  6059  funimass4  6886  fnssintima  7296  imaeqalov  7585  marypha2lem3  9321  kmlem12  10053  vdwmc2  16891  itg2leub  25662  eqscut2  27747  addsuniflem  27944  mulsuniflem  28088  onsfi  28283  nmoubi  30752  choc0  31306  nmopub  31888  nmfnleub  31905  elintfv  35809  heibor1lem  37848  elmapintrab  43668
  Copyright terms: Public domain W3C validator