MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalv Structured version   Visualization version   GIF version

Theorem ceqsalv 3490
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2178. (Revised by SN, 8-Sep-2024.)
Hypotheses
Ref Expression
ceqsalv.1 𝐴 ∈ V
ceqsalv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsalv (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsalv
StepHypRef Expression
1 19.23v 1942 . 2 (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓))
2 ceqsalv.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
32pm5.74i 271 . . 3 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
43albii 1819 . 2 (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜓))
5 ceqsalv.1 . . . 4 𝐴 ∈ V
65isseti 3468 . . 3 𝑥 𝑥 = 𝐴
76a1bi 362 . 2 (𝜓 ↔ (∃𝑥 𝑥 = 𝐴𝜓))
81, 4, 73bitr4i 303 1 (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2804
This theorem is referenced by:  ceqsexv  3501  ralxpxfr2d  3615  frsn  5729  raliunxp  5806  idrefALT  6087  funimass4  6928  fnssintima  7340  imaeqalov  7631  marypha2lem3  9395  kmlem12  10122  vdwmc2  16957  itg2leub  25642  eqscut2  27725  addsuniflem  27915  mulsuniflem  28059  onsfi  28254  nmoubi  30708  choc0  31262  nmopub  31844  nmfnleub  31861  elintfv  35759  heibor1lem  37810  elmapintrab  43572
  Copyright terms: Public domain W3C validator