Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsalv | Structured version Visualization version GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2173. (Revised by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
ceqsalv.1 | ⊢ 𝐴 ∈ V |
ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalv | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsalv.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.74i 270 | . . 3 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
3 | 2 | albii 1823 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
4 | 19.23v 1946 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
5 | ceqsalv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
6 | 5 | isseti 3437 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 |
7 | pm5.5 361 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((∃𝑥 𝑥 = 𝐴 → 𝜓) ↔ 𝜓) |
9 | 3, 4, 8 | 3bitri 296 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clel 2817 |
This theorem is referenced by: ralxpxfr2d 3568 clel4OLD 3588 frsn 5665 raliunxp 5737 idrefALT 6007 funimass4 6816 marypha2lem3 9126 kmlem12 9848 vdwmc2 16608 itg2leub 24804 nmoubi 29035 choc0 29589 nmopub 30171 nmfnleub 30188 fnssintima 33578 elintfv 33644 eqscut2 33927 heibor1lem 35894 elmapintrab 41073 |
Copyright terms: Public domain | W3C validator |