| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsalv | Structured version Visualization version GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2180. (Revised by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| ceqsalv.1 | ⊢ 𝐴 ∈ V |
| ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsalv | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23v 1943 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
| 2 | ceqsalv.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
| 4 | 3 | albii 1820 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
| 5 | ceqsalv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 6 | 5 | isseti 3454 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 7 | 6 | a1bi 362 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
| 8 | 1, 4, 7 | 3bitr4i 303 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 |
| This theorem is referenced by: ceqsexv 3486 ralxpxfr2d 3596 frsn 5702 raliunxp 5778 idrefALT 6059 funimass4 6886 fnssintima 7296 imaeqalov 7585 marypha2lem3 9321 kmlem12 10053 vdwmc2 16891 itg2leub 25662 eqscut2 27747 addsuniflem 27944 mulsuniflem 28088 onsfi 28283 nmoubi 30752 choc0 31306 nmopub 31888 nmfnleub 31905 elintfv 35809 heibor1lem 37848 elmapintrab 43668 |
| Copyright terms: Public domain | W3C validator |