| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsalv | Structured version Visualization version GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) Avoid ax-12 2178. (Revised by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| ceqsalv.1 | ⊢ 𝐴 ∈ V |
| ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsalv | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23v 1942 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) | |
| 2 | ceqsalv.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | pm5.74i 271 | . . 3 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
| 5 | ceqsalv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 6 | 5 | isseti 3465 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 7 | 6 | a1bi 362 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
| 8 | 1, 4, 7 | 3bitr4i 303 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: ceqsexv 3498 ralxpxfr2d 3612 frsn 5726 raliunxp 5803 idrefALT 6084 funimass4 6925 fnssintima 7337 imaeqalov 7628 marypha2lem3 9388 kmlem12 10115 vdwmc2 16950 itg2leub 25635 eqscut2 27718 addsuniflem 27908 mulsuniflem 28052 onsfi 28247 nmoubi 30701 choc0 31255 nmopub 31837 nmfnleub 31854 elintfv 35752 heibor1lem 37803 elmapintrab 43565 |
| Copyright terms: Public domain | W3C validator |