MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dariiALT Structured version   Visualization version   GIF version

Theorem dariiALT 2659
Description: Alternate proof of darii 2658, shorter but using more axioms. This shows how the use of spi 2175 may shorten some proofs of the Aristotelian syllogisms, even though this adds axiom dependencies. Note that spi 2175 is the inference associated with sp 2174, which corresponds to the axiom (T) of modal logic. (Contributed by David A. Wheeler, 27-Aug-2016.) Added precisions on axiom usage. (Revised by BJ, 27-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
darii.maj 𝑥(𝜑𝜓)
darii.min 𝑥(𝜒𝜑)
Assertion
Ref Expression
dariiALT 𝑥(𝜒𝜓)

Proof of Theorem dariiALT
StepHypRef Expression
1 darii.min . 2 𝑥(𝜒𝜑)
2 darii.maj . . . 4 𝑥(𝜑𝜓)
32spi 2175 . . 3 (𝜑𝜓)
43anim2i 615 . 2 ((𝜒𝜑) → (𝜒𝜓))
51, 4eximii 1837 1 𝑥(𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1537  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator