MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dariiALT Structured version   Visualization version   GIF version

Theorem dariiALT 2661
Description: Alternate proof of darii 2660, shorter but using more axioms. This shows how the use of spi 2187 may shorten some proofs of the Aristotelian syllogisms, even though this adds axiom dependencies. Note that spi 2187 is the inference associated with sp 2186, which corresponds to the axiom (T) of modal logic. (Contributed by David A. Wheeler, 27-Aug-2016.) Added precisions on axiom usage. (Revised by BJ, 27-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
darii.maj 𝑥(𝜑𝜓)
darii.min 𝑥(𝜒𝜑)
Assertion
Ref Expression
dariiALT 𝑥(𝜒𝜓)

Proof of Theorem dariiALT
StepHypRef Expression
1 darii.min . 2 𝑥(𝜒𝜑)
2 darii.maj . . . 4 𝑥(𝜑𝜓)
32spi 2187 . . 3 (𝜑𝜓)
43anim2i 617 . 2 ((𝜒𝜑) → (𝜒𝜓))
51, 4eximii 1838 1 𝑥(𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator