Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dariiALT | Structured version Visualization version GIF version |
Description: Alternate proof of darii 2666, shorter but using more axioms. This shows how the use of spi 2177 may shorten some proofs of the Aristotelian syllogisms, even though this adds axiom dependencies. Note that spi 2177 is the inference associated with sp 2176, which corresponds to the axiom (T) of modal logic. (Contributed by David A. Wheeler, 27-Aug-2016.) Added precisions on axiom usage. (Revised by BJ, 27-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
darii.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
darii.min | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
Ref | Expression |
---|---|
dariiALT | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | darii.min | . 2 ⊢ ∃𝑥(𝜒 ∧ 𝜑) | |
2 | darii.maj | . . . 4 ⊢ ∀𝑥(𝜑 → 𝜓) | |
3 | 2 | spi 2177 | . . 3 ⊢ (𝜑 → 𝜓) |
4 | 3 | anim2i 617 | . 2 ⊢ ((𝜒 ∧ 𝜑) → (𝜒 ∧ 𝜓)) |
5 | 1, 4 | eximii 1839 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |