MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dariiALT Structured version   Visualization version   GIF version

Theorem dariiALT 2667
Description: Alternate proof of darii 2666, shorter but using more axioms. This shows how the use of spi 2177 may shorten some proofs of the Aristotelian syllogisms, even though this adds axiom dependencies. Note that spi 2177 is the inference associated with sp 2176, which corresponds to the axiom (T) of modal logic. (Contributed by David A. Wheeler, 27-Aug-2016.) Added precisions on axiom usage. (Revised by BJ, 27-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
darii.maj 𝑥(𝜑𝜓)
darii.min 𝑥(𝜒𝜑)
Assertion
Ref Expression
dariiALT 𝑥(𝜒𝜓)

Proof of Theorem dariiALT
StepHypRef Expression
1 darii.min . 2 𝑥(𝜒𝜑)
2 darii.maj . . . 4 𝑥(𝜑𝜓)
32spi 2177 . . 3 (𝜑𝜓)
43anim2i 617 . 2 ((𝜒𝜑) → (𝜒𝜓))
51, 4eximii 1839 1 𝑥(𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator