MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dariiALT Structured version   Visualization version   GIF version

Theorem dariiALT 2666
Description: Alternate proof of darii 2665, shorter but using more axioms. This shows how the use of spi 2181 may shorten some proofs of the Aristotelian syllogisms, even though this adds axiom dependencies. Note that spi 2181 is the inference associated with sp 2180, which corresponds to the axiom (T) of modal logic. (Contributed by David A. Wheeler, 27-Aug-2016.) Added precisions on axiom usage. (Revised by BJ, 27-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
darii.maj 𝑥(𝜑𝜓)
darii.min 𝑥(𝜒𝜑)
Assertion
Ref Expression
dariiALT 𝑥(𝜒𝜓)

Proof of Theorem dariiALT
StepHypRef Expression
1 darii.min . 2 𝑥(𝜒𝜑)
2 darii.maj . . . 4 𝑥(𝜑𝜓)
32spi 2181 . . 3 (𝜑𝜓)
43anim2i 620 . 2 ((𝜒𝜑) → (𝜒𝜓))
51, 4eximii 1844 1 𝑥(𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1541  wex 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator