Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version |
Description: Inference associated with eximi 1838. (Contributed by BJ, 3-Feb-2018.) |
Ref | Expression |
---|---|
eximii.1 | ⊢ ∃𝑥𝜑 |
eximii.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximii | ⊢ ∃𝑥𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | eximi 1838 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: exan 1866 ax6evr 2019 spimedv 2193 spimfv 2235 ax6e 2383 spim 2387 spimed 2388 spimvALT 2391 spei 2394 equvini 2455 equvel 2456 euequ 2597 dariiALT 2667 barbariALT 2671 festinoALT 2676 barocoALT 2678 daraptiALT 2686 vtoclf 3487 axrep2 5208 axnul 5224 nalset 5232 notzfaus 5280 el 5287 dtru 5288 dvdemo1 5291 dvdemo2 5292 eusv2nf 5313 axprALT 5340 axpr 5346 inf1 9310 bnd 9581 axpowndlem2 10285 grothomex 10516 tgjustc1 26740 tgjustc2 26741 bnj101 32602 axextdfeq 33679 ax8dfeq 33680 axextndbi 33686 snelsingles 34151 bj-ax6elem2 34775 bj-dtru 34926 ax6er 34943 bj-vtoclf 35027 wl-exeq 35620 sn-el 40115 spd 46270 elpglem2 46303 eximp-surprise2 46375 |
Copyright terms: Public domain | W3C validator |