| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version | ||
| Description: Inference associated with eximi 1835. (Contributed by BJ, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| eximii.1 | ⊢ ∃𝑥𝜑 |
| eximii.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximii | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: exan 1862 ax6evr 2015 spimedv 2198 spimfv 2240 ax6e 2381 spim 2385 spimed 2386 spimvALT 2389 spei 2392 equvini 2453 equvel 2454 euequ 2590 dariiALT 2659 barbariALT 2663 festinoALT 2668 barocoALT 2670 daraptiALT 2678 ceqsexv2d 3499 vtoclfOLD 3531 axrep2 5237 axnul 5260 nalset 5268 notzfaus 5318 axpow3 5323 elALT2 5324 dtruALT2 5325 dvdemo1 5328 dvdemo2 5329 eusv2nf 5350 axprALT 5377 axprOLD 5386 exel 5393 dtruOLD 5401 inf1 9575 omex 9596 bnd 9845 axpowndlem2 10551 grothomex 10782 tgjustc1 28402 tgjustc2 28403 bnj101 34713 axsepg2 35072 axsepg2ALT 35073 axnulALT2 35083 axextdfeq 35785 ax8dfeq 35786 axextndbi 35792 snelsingles 35910 bj-ax6elem2 36655 ax6er 36821 bj-vtoclf 36903 wl-exeq 37522 exbiii 42198 sn-exelALT 42206 spd 49667 elpglem2 49701 eximp-surprise2 49774 |
| Copyright terms: Public domain | W3C validator |