| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version | ||
| Description: Inference associated with eximi 1835. (Contributed by BJ, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| eximii.1 | ⊢ ∃𝑥𝜑 |
| eximii.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximii | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: exan 1862 ax6evr 2015 spimedv 2198 spimfv 2240 ax6e 2381 spim 2385 spimed 2386 spimvALT 2389 spei 2392 equvini 2453 equvel 2454 euequ 2590 dariiALT 2659 barbariALT 2663 festinoALT 2668 barocoALT 2670 daraptiALT 2678 ceqsexv2d 3488 vtoclfOLD 3520 axrep2 5221 axnul 5244 nalset 5252 notzfaus 5302 axpow3 5307 elALT2 5308 dtruALT2 5309 dvdemo1 5312 dvdemo2 5313 eusv2nf 5334 axprALT 5361 axprOLD 5370 exel 5377 elirrv 9489 inf1 9518 omex 9539 bnd 9788 axpowndlem2 10492 grothomex 10723 tgjustc1 28420 tgjustc2 28421 bnj101 34690 axsepg2 35049 axsepg2ALT 35050 axnulALT2 35060 axextdfeq 35771 ax8dfeq 35772 axextndbi 35778 snelsingles 35896 bj-ax6elem2 36641 ax6er 36807 bj-vtoclf 36889 wl-exeq 37508 exbiii 42183 sn-exelALT 42191 spd 49663 elpglem2 49697 eximp-surprise2 49770 |
| Copyright terms: Public domain | W3C validator |