![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version |
Description: Inference associated with eximi 1832. (Contributed by BJ, 3-Feb-2018.) |
Ref | Expression |
---|---|
eximii.1 | ⊢ ∃𝑥𝜑 |
eximii.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximii | ⊢ ∃𝑥𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | eximi 1832 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: exan 1860 ax6evr 2012 spimedv 2195 spimfv 2237 ax6e 2386 spim 2390 spimed 2391 spimvALT 2394 spei 2397 equvini 2458 equvel 2459 euequ 2595 dariiALT 2664 barbariALT 2668 festinoALT 2673 barocoALT 2675 daraptiALT 2683 ceqsexv2d 3533 vtoclfOLD 3565 axrep2 5288 axnul 5311 nalset 5319 notzfaus 5369 elALT2 5375 dtruALT2 5376 dvdemo1 5379 dvdemo2 5380 eusv2nf 5401 axprALT 5428 axprOLD 5437 exel 5444 dtruOLD 5452 inf1 9660 bnd 9930 axpowndlem2 10636 grothomex 10867 tgjustc1 28498 tgjustc2 28499 bnj101 34716 axsepg2 35075 axsepg2ALT 35076 axnulALT2 35086 axextdfeq 35779 ax8dfeq 35780 axextndbi 35786 snelsingles 35904 bj-ax6elem2 36650 ax6er 36816 bj-vtoclf 36898 wl-exeq 37515 sn-exelALT 42236 spd 48909 elpglem2 48943 eximp-surprise2 49016 |
Copyright terms: Public domain | W3C validator |