![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version |
Description: Inference associated with eximi 1833. (Contributed by BJ, 3-Feb-2018.) |
Ref | Expression |
---|---|
eximii.1 | ⊢ ∃𝑥𝜑 |
eximii.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximii | ⊢ ∃𝑥𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | eximi 1833 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: exan 1861 ax6evr 2014 spimedv 2198 spimfv 2240 ax6e 2391 spim 2395 spimed 2396 spimvALT 2399 spei 2402 equvini 2463 equvel 2464 euequ 2600 dariiALT 2669 barbariALT 2673 festinoALT 2678 barocoALT 2680 daraptiALT 2688 ceqsexv2d 3545 vtoclfOLD 3577 axrep2 5306 axnul 5323 nalset 5331 notzfaus 5381 elALT2 5387 dtruALT2 5388 dvdemo1 5391 dvdemo2 5392 eusv2nf 5413 axprALT 5440 axpr 5446 exel 5453 dtruOLD 5461 inf1 9691 bnd 9961 axpowndlem2 10667 grothomex 10898 tgjustc1 28501 tgjustc2 28502 bnj101 34699 axsepg2 35058 axsepg2ALT 35059 axnulALT2 35069 axextdfeq 35761 ax8dfeq 35762 axextndbi 35768 snelsingles 35886 bj-ax6elem2 36633 ax6er 36799 bj-vtoclf 36881 wl-exeq 37488 sn-exelALT 42211 spd 48770 elpglem2 48804 eximp-surprise2 48879 |
Copyright terms: Public domain | W3C validator |