| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version | ||
| Description: Inference associated with eximi 1835. (Contributed by BJ, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| eximii.1 | ⊢ ∃𝑥𝜑 |
| eximii.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximii | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: exan 1862 ax6evr 2015 spimedv 2198 spimfv 2240 ax6e 2388 spim 2392 spimed 2393 spimvALT 2396 spei 2399 equvini 2460 equvel 2461 euequ 2597 dariiALT 2666 barbariALT 2670 festinoALT 2675 barocoALT 2677 daraptiALT 2685 ceqsexv2d 3517 vtoclfOLD 3549 axrep2 5257 axnul 5280 nalset 5288 notzfaus 5338 axpow3 5343 elALT2 5344 dtruALT2 5345 dvdemo1 5348 dvdemo2 5349 eusv2nf 5370 axprALT 5397 axprOLD 5406 exel 5413 dtruOLD 5421 inf1 9641 omex 9662 bnd 9911 axpowndlem2 10617 grothomex 10848 tgjustc1 28459 tgjustc2 28460 bnj101 34759 axsepg2 35118 axsepg2ALT 35119 axnulALT2 35129 axextdfeq 35820 ax8dfeq 35821 axextndbi 35827 snelsingles 35945 bj-ax6elem2 36690 ax6er 36856 bj-vtoclf 36938 wl-exeq 37557 exbiii 42228 sn-exelALT 42236 spd 49522 elpglem2 49556 eximp-surprise2 49629 |
| Copyright terms: Public domain | W3C validator |