| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version | ||
| Description: Inference associated with eximi 1834. (Contributed by BJ, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| eximii.1 | ⊢ ∃𝑥𝜑 |
| eximii.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximii | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | eximi 1834 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: exan 1861 ax6evr 2013 spimedv 2196 spimfv 2238 ax6e 2387 spim 2391 spimed 2392 spimvALT 2395 spei 2398 equvini 2459 equvel 2460 euequ 2596 dariiALT 2665 barbariALT 2669 festinoALT 2674 barocoALT 2676 daraptiALT 2684 ceqsexv2d 3532 vtoclfOLD 3564 axrep2 5281 axnul 5304 nalset 5312 notzfaus 5362 axpow3 5367 elALT2 5368 dtruALT2 5369 dvdemo1 5372 dvdemo2 5373 eusv2nf 5394 axprALT 5421 axprOLD 5430 exel 5437 dtruOLD 5445 inf1 9663 omex 9684 bnd 9933 axpowndlem2 10639 grothomex 10870 tgjustc1 28484 tgjustc2 28485 bnj101 34738 axsepg2 35097 axsepg2ALT 35098 axnulALT2 35108 axextdfeq 35799 ax8dfeq 35800 axextndbi 35806 snelsingles 35924 bj-ax6elem2 36669 ax6er 36835 bj-vtoclf 36917 wl-exeq 37536 exbiii 42250 sn-exelALT 42258 spd 49252 elpglem2 49286 eximp-surprise2 49359 |
| Copyright terms: Public domain | W3C validator |