MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximii Structured version   Visualization version   GIF version

Theorem eximii 1837
Description: Inference associated with eximi 1835. (Contributed by BJ, 3-Feb-2018.)
Hypotheses
Ref Expression
eximii.1 𝑥𝜑
eximii.2 (𝜑𝜓)
Assertion
Ref Expression
eximii 𝑥𝜓

Proof of Theorem eximii
StepHypRef Expression
1 eximii.1 . 2 𝑥𝜑
2 eximii.2 . . 3 (𝜑𝜓)
32eximi 1835 . 2 (∃𝑥𝜑 → ∃𝑥𝜓)
41, 3ax-mp 5 1 𝑥𝜓
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  exan  1862  ax6evr  2015  spimedv  2198  spimfv  2240  ax6e  2381  spim  2385  spimed  2386  spimvALT  2389  spei  2392  equvini  2453  equvel  2454  euequ  2590  dariiALT  2659  barbariALT  2663  festinoALT  2668  barocoALT  2670  daraptiALT  2678  ceqsexv2d  3496  vtoclfOLD  3528  axrep2  5232  axnul  5255  nalset  5263  notzfaus  5313  axpow3  5318  elALT2  5319  dtruALT2  5320  dvdemo1  5323  dvdemo2  5324  eusv2nf  5345  axprALT  5372  axprOLD  5381  exel  5388  dtruOLD  5396  inf1  9551  omex  9572  bnd  9821  axpowndlem2  10527  grothomex  10758  tgjustc1  28378  tgjustc2  28379  bnj101  34686  axsepg2  35045  axsepg2ALT  35046  axnulALT2  35056  axextdfeq  35758  ax8dfeq  35759  axextndbi  35765  snelsingles  35883  bj-ax6elem2  36628  ax6er  36794  bj-vtoclf  36876  wl-exeq  37495  exbiii  42171  sn-exelALT  42179  spd  49640  elpglem2  49674  eximp-surprise2  49747
  Copyright terms: Public domain W3C validator