![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version |
Description: Inference associated with eximi 1935. (Contributed by BJ, 3-Feb-2018.) |
Ref | Expression |
---|---|
eximii.1 | ⊢ ∃𝑥𝜑 |
eximii.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximii | ⊢ ∃𝑥𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 2 | eximi 1935 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 |
This theorem depends on definitions: df-bi 199 df-ex 1881 |
This theorem is referenced by: exgen 2080 spimeh 2103 ax6evr 2121 spimv1 2298 ax6e 2404 spim 2409 spimed 2410 spimvALT 2413 spei 2416 equvini 2477 equvel 2478 euequ 2670 euequOLD 2671 euexOLD 2683 dariiALT 2750 barbariALT 2754 festinoALT 2761 barocoALT 2763 cesaroOLD 2765 camestrosOLD 2767 datisiOLD 2769 disamisOLD 2771 daraptiALT 2775 dimatisOLD 2780 fresisonOLD 2782 calemosOLD 2784 fesapoOLD 2786 bamalipOLD 2788 vtoclf 3475 vtocl 3476 axrep2 4998 axnul 5013 nalset 5021 notzfaus 5063 el 5070 dtru 5071 dvdemo1 5074 dvdemo2 5075 eusv2nf 5096 axpr 5127 inf1 8797 bnd 9033 axpowndlem2 9736 grothomex 9967 tgjustc1 25788 tgjustc2 25789 bnj101 31339 axextdfeq 32242 ax8dfeq 32243 axextndbi 32249 snelsingles 32569 bj-ax6elem2 33189 bj-spimedv 33254 bj-spimvv 33256 bj-speiv 33259 bj-axrep2 33315 bj-nalset 33320 bj-el 33322 bj-dtru 33323 bj-dvdemo1 33328 bj-dvdemo2 33329 ax6er 33345 bj-vtoclf 33431 wl-exeq 33866 spd 43321 elpglem2 43354 eximp-surprise2 43428 |
Copyright terms: Public domain | W3C validator |