| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version | ||
| Description: Inference associated with eximi 1835. (Contributed by BJ, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| eximii.1 | ⊢ ∃𝑥𝜑 |
| eximii.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximii | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | eximi 1835 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: exan 1862 ax6evr 2015 spimedv 2198 spimfv 2240 ax6e 2381 spim 2385 spimed 2386 spimvALT 2389 spei 2392 equvini 2453 equvel 2454 euequ 2590 dariiALT 2659 barbariALT 2663 festinoALT 2668 barocoALT 2670 daraptiALT 2678 ceqsexv2d 3496 vtoclfOLD 3528 axrep2 5232 axnul 5255 nalset 5263 notzfaus 5313 axpow3 5318 elALT2 5319 dtruALT2 5320 dvdemo1 5323 dvdemo2 5324 eusv2nf 5345 axprALT 5372 axprOLD 5381 exel 5388 dtruOLD 5396 inf1 9551 omex 9572 bnd 9821 axpowndlem2 10527 grothomex 10758 tgjustc1 28378 tgjustc2 28379 bnj101 34686 axsepg2 35045 axsepg2ALT 35046 axnulALT2 35056 axextdfeq 35758 ax8dfeq 35759 axextndbi 35765 snelsingles 35883 bj-ax6elem2 36628 ax6er 36794 bj-vtoclf 36876 wl-exeq 37495 exbiii 42171 sn-exelALT 42179 spd 49640 elpglem2 49674 eximp-surprise2 49747 |
| Copyright terms: Public domain | W3C validator |