| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximii | Structured version Visualization version GIF version | ||
| Description: Inference associated with eximi 1836. (Contributed by BJ, 3-Feb-2018.) |
| Ref | Expression |
|---|---|
| eximii.1 | ⊢ ∃𝑥𝜑 |
| eximii.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximii | ⊢ ∃𝑥𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximii.1 | . 2 ⊢ ∃𝑥𝜑 | |
| 2 | eximii.2 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | eximi 1836 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ∃𝑥𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: exan 1863 ax6evr 2016 spimedv 2200 spimfv 2242 ax6e 2383 spim 2387 spimed 2388 spimvALT 2391 spei 2394 equvini 2455 equvel 2456 euequ 2592 dariiALT 2661 barbariALT 2665 festinoALT 2670 barocoALT 2672 daraptiALT 2680 ceqsexv2d 3487 axrep2 5218 axnul 5241 nalset 5249 notzfaus 5299 axpow3 5304 elALT2 5305 dtruALT2 5306 dvdemo1 5309 dvdemo2 5310 eusv2nf 5331 axprALT 5358 axprOLD 5367 exel 5374 elirrv 9483 inf1 9512 omex 9533 bnd 9785 axpowndlem2 10489 grothomex 10720 tgjustc1 28453 tgjustc2 28454 bnj101 34735 axsepg2 35094 axsepg2ALT 35095 axnulALT2 35120 axextdfeq 35839 ax8dfeq 35840 axextndbi 35846 snelsingles 35964 bj-ax6elem2 36709 ax6er 36875 bj-vtoclf 36957 wl-exeq 37576 exbiii 42251 sn-exelALT 42259 spd 49718 elpglem2 49752 eximp-surprise2 49825 |
| Copyright terms: Public domain | W3C validator |