MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spi Structured version   Visualization version   GIF version

Theorem spi 2185
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1795. Contrary to the rule of generalization, its closed form is valid, see sp 2184. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 sp 2184 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780
This theorem is referenced by:  dariiALT  2659  barbariALT  2663  festinoALT  2668  barocoALT  2670  daraptiALT  2678  nfnfc  2904  kmlem2  10105  axac2  10419  axac  10420  axaci  10421  bnj864  34912  in-ax8  36212  bj-snexg  37022  bj-unexg  37026  bj-adjg1  37031  sticksstones1  42134  sticksstones2  42135  rr-grothprim  44289  rr-grothshort  44293
  Copyright terms: Public domain W3C validator