![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spi | Structured version Visualization version GIF version |
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1798. Contrary to the rule of generalization, its closed form is valid, see sp 2177. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
spi.1 | ⊢ ∀𝑥𝜑 |
Ref | Expression |
---|---|
spi | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spi.1 | . 2 ⊢ ∀𝑥𝜑 | |
2 | sp 2177 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: dariiALT 2662 barbariALT 2666 festinoALT 2671 barocoALT 2673 daraptiALT 2681 nfnfc 2916 kmlem2 10146 axac2 10461 axac 10462 axaci 10463 bnj864 33933 bj-snexg 35915 bj-unexg 35919 bj-adjg1 35924 sticksstones1 40962 sticksstones2 40963 rr-grothprim 43059 rr-grothshort 43063 |
Copyright terms: Public domain | W3C validator |