MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spi Structured version   Visualization version   GIF version

Theorem spi 2176
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1796. Contrary to the rule of generalization, its closed form is valid, see sp 2175. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 sp 2175 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-ex 1781
This theorem is referenced by:  dariiALT  2665  barbariALT  2669  festinoALT  2674  barocoALT  2676  daraptiALT  2684  nfnfc  2916  kmlem2  10000  axac2  10315  axac  10316  axaci  10317  bnj864  33142  bj-snexg  35311  bj-unexg  35315  sticksstones1  40352  sticksstones2  40353  rr-grothprim  42228  rr-grothshort  42232
  Copyright terms: Public domain W3C validator