Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spi | Structured version Visualization version GIF version |
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1796. Contrary to the rule of generalization, its closed form is valid, see sp 2175. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
spi.1 | ⊢ ∀𝑥𝜑 |
Ref | Expression |
---|---|
spi | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spi.1 | . 2 ⊢ ∀𝑥𝜑 | |
2 | sp 2175 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-ex 1781 |
This theorem is referenced by: dariiALT 2665 barbariALT 2669 festinoALT 2674 barocoALT 2676 daraptiALT 2684 nfnfc 2916 kmlem2 10000 axac2 10315 axac 10316 axaci 10317 bnj864 33142 bj-snexg 35311 bj-unexg 35315 sticksstones1 40352 sticksstones2 40353 rr-grothprim 42228 rr-grothshort 42232 |
Copyright terms: Public domain | W3C validator |