MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spi Structured version   Visualization version   GIF version

Theorem spi 2183
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1794. Contrary to the rule of generalization, its closed form is valid, see sp 2182. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 sp 2182 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-ex 1779
This theorem is referenced by:  dariiALT  2664  barbariALT  2668  festinoALT  2673  barocoALT  2675  daraptiALT  2683  nfnfc  2910  kmlem2  10159  axac2  10473  axac  10474  axaci  10475  bnj864  34882  in-ax8  36171  bj-snexg  36981  bj-unexg  36985  bj-adjg1  36990  sticksstones1  42088  sticksstones2  42089  rr-grothprim  44257  rr-grothshort  44261
  Copyright terms: Public domain W3C validator