MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spi Structured version   Visualization version   GIF version

Theorem spi 2178
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1798. Contrary to the rule of generalization, its closed form is valid, see sp 2177. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 sp 2177 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  dariiALT  2662  barbariALT  2666  festinoALT  2671  barocoALT  2673  daraptiALT  2681  nfnfc  2916  kmlem2  10146  axac2  10461  axac  10462  axaci  10463  bnj864  33933  bj-snexg  35915  bj-unexg  35919  bj-adjg1  35924  sticksstones1  40962  sticksstones2  40963  rr-grothprim  43059  rr-grothshort  43063
  Copyright terms: Public domain W3C validator