MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spi Structured version   Visualization version   GIF version

Theorem spi 2187
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1796. Contrary to the rule of generalization, its closed form is valid, see sp 2186. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 sp 2186 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781
This theorem is referenced by:  dariiALT  2661  barbariALT  2665  festinoALT  2670  barocoALT  2672  daraptiALT  2680  nfnfc  2907  kmlem2  10040  axac2  10354  axac  10355  axaci  10356  bnj864  34929  in-ax8  36257  bj-snexg  37067  bj-unexg  37071  bj-adjg1  37076  sticksstones1  42178  sticksstones2  42179  rr-grothprim  44332  rr-grothshort  44336
  Copyright terms: Public domain W3C validator