MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spi Structured version   Visualization version   GIF version

Theorem spi 2170
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1790. Contrary to the rule of generalization, its closed form is valid, see sp 2169. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 sp 2169 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-12 2164
This theorem depends on definitions:  df-bi 206  df-ex 1775
This theorem is referenced by:  dariiALT  2656  barbariALT  2660  festinoALT  2665  barocoALT  2667  daraptiALT  2675  nfnfc  2910  kmlem2  10166  axac2  10481  axac  10482  axaci  10483  bnj864  34489  bj-snexg  36449  bj-unexg  36453  bj-adjg1  36458  sticksstones1  41550  sticksstones2  41551  rr-grothprim  43660  rr-grothshort  43664
  Copyright terms: Public domain W3C validator