![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spi | Structured version Visualization version GIF version |
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1789. Contrary to the rule of generalization, its closed form is valid, see sp 2171. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
spi.1 | ⊢ ∀𝑥𝜑 |
Ref | Expression |
---|---|
spi | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spi.1 | . 2 ⊢ ∀𝑥𝜑 | |
2 | sp 2171 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-ex 1774 |
This theorem is referenced by: dariiALT 2654 barbariALT 2658 festinoALT 2663 barocoALT 2665 daraptiALT 2673 nfnfc 2905 kmlem2 10174 axac2 10489 axac 10490 axaci 10491 bnj864 34640 bj-snexg 36600 bj-unexg 36604 bj-adjg1 36609 sticksstones1 41704 sticksstones2 41705 rr-grothprim 43819 rr-grothshort 43823 |
Copyright terms: Public domain | W3C validator |