MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spi Structured version   Visualization version   GIF version

Theorem spi 2180
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1790. Contrary to the rule of generalization, its closed form is valid, see sp 2179. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 sp 2179 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-12 2173
This theorem depends on definitions:  df-bi 207  df-ex 1775
This theorem is referenced by:  dariiALT  2662  barbariALT  2666  festinoALT  2671  barocoALT  2673  daraptiALT  2681  nfnfc  2914  kmlem2  10184  axac2  10498  axac  10499  axaci  10500  bnj864  34876  in-ax8  36167  bj-snexg  36977  bj-unexg  36981  bj-adjg1  36986  sticksstones1  42089  sticksstones2  42090  rr-grothprim  44262  rr-grothshort  44266
  Copyright terms: Public domain W3C validator