MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spi Structured version   Visualization version   GIF version

Theorem spi 2172
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1789. Contrary to the rule of generalization, its closed form is valid, see sp 2171. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
spi.1 𝑥𝜑
Assertion
Ref Expression
spi 𝜑

Proof of Theorem spi
StepHypRef Expression
1 spi.1 . 2 𝑥𝜑
2 sp 2171 . 2 (∀𝑥𝜑𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-ex 1774
This theorem is referenced by:  dariiALT  2654  barbariALT  2658  festinoALT  2663  barocoALT  2665  daraptiALT  2673  nfnfc  2905  kmlem2  10174  axac2  10489  axac  10490  axaci  10491  bnj864  34640  bj-snexg  36600  bj-unexg  36604  bj-adjg1  36609  sticksstones1  41704  sticksstones2  41705  rr-grothprim  43819  rr-grothshort  43823
  Copyright terms: Public domain W3C validator