![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spi | Structured version Visualization version GIF version |
Description: Inference rule of universal instantiation, or universal specialization. Converse of the inference rule of (universal) generalization ax-gen 1790. Contrary to the rule of generalization, its closed form is valid, see sp 2179. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
spi.1 | ⊢ ∀𝑥𝜑 |
Ref | Expression |
---|---|
spi | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spi.1 | . 2 ⊢ ∀𝑥𝜑 | |
2 | sp 2179 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-12 2173 |
This theorem depends on definitions: df-bi 207 df-ex 1775 |
This theorem is referenced by: dariiALT 2662 barbariALT 2666 festinoALT 2671 barocoALT 2673 daraptiALT 2681 nfnfc 2914 kmlem2 10184 axac2 10498 axac 10499 axaci 10500 bnj864 34876 in-ax8 36167 bj-snexg 36977 bj-unexg 36981 bj-adjg1 36986 sticksstones1 42089 sticksstones2 42090 rr-grothprim 44262 rr-grothshort 44266 |
Copyright terms: Public domain | W3C validator |