Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim12i | Structured version Visualization version GIF version |
Description: Inference joining two implications. Inference associated with imim12 105. Its associated inference is 3syl 18. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Mel L. O'Cat, 29-Oct-2011.) |
Ref | Expression |
---|---|
imim12i.1 | ⊢ (𝜑 → 𝜓) |
imim12i.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
imim12i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | imim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | 2 | imim2i 16 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
4 | 1, 3 | syl5 34 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1i 63 dedlem0b 1041 meredith 1644 sbequ2 2248 sbequ2OLD 2249 pssnn 8758 kmlem1 9603 brdom5 9982 brdom4 9983 axpowndlem2 10051 naim1 34120 naim2 34121 meran1 34142 bj-gl4 34316 bj-wnf1 34438 rp-fakeanorass 40587 fiinfi 40638 axc11next 41476 |
Copyright terms: Public domain | W3C validator |