MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imim12i Structured version   Visualization version   GIF version

Theorem imim12i 62
Description: Inference joining two implications. Inference associated with imim12 105. Its associated inference is 3syl 18. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Mel L. O'Cat, 29-Oct-2011.)
Hypotheses
Ref Expression
imim12i.1 (𝜑𝜓)
imim12i.2 (𝜒𝜃)
Assertion
Ref Expression
imim12i ((𝜓𝜒) → (𝜑𝜃))

Proof of Theorem imim12i
StepHypRef Expression
1 imim12i.1 . 2 (𝜑𝜓)
2 imim12i.2 . . 3 (𝜒𝜃)
32imim2i 16 . 2 ((𝜓𝜒) → (𝜓𝜃))
41, 3syl5 34 1 ((𝜓𝜒) → (𝜑𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imim1i  63  dedlem0b  1029  meredith  1714  pssnn  8332  kmlem1  9172  brdom5  9551  brdom4  9552  axpowndlem2  9620  naim1  32714  naim2  32715  meran1  32740  bj-gl4  32910  rp-fakeanorass  38377  fiinfi  38397  axc11next  39126
  Copyright terms: Public domain W3C validator