|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > imim12i | Structured version Visualization version GIF version | ||
| Description: Inference joining two implications. Inference associated with imim12 105. Its associated inference is 3syl 18. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Mel L. O'Cat, 29-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| imim12i.1 | ⊢ (𝜑 → 𝜓) | 
| imim12i.2 | ⊢ (𝜒 → 𝜃) | 
| Ref | Expression | 
|---|---|
| imim12i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imim12i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | imim12i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | 2 | imim2i 16 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) | 
| 4 | 1, 3 | syl5 34 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 | 
| This theorem is referenced by: imim1i 63 dedlem0b 1045 meredith 1641 sbequ2 2249 pssnn 9208 kmlem1 10191 brdom5 10569 brdom4 10570 axpowndlem2 10638 naim1 36390 naim2 36391 meran1 36412 bj-gl4 36596 bj-wnf1 36718 rp-fakeanorass 43526 fiinfi 43586 axc11next 44425 | 
| Copyright terms: Public domain | W3C validator |