Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dedlema | Structured version Visualization version GIF version |
Description: Lemma for weak deduction theorem. See also ifptru 1074. (Contributed by NM, 26-Jun-2002.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
dedlema | ⊢ (𝜑 → (𝜓 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 865 | . . 3 ⊢ ((𝜓 ∧ 𝜑) → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑))) | |
2 | 1 | expcom 415 | . 2 ⊢ (𝜑 → (𝜓 → ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) |
3 | simpl 484 | . . . 4 ⊢ ((𝜓 ∧ 𝜑) → 𝜓) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜑) → 𝜓)) |
5 | pm2.24 124 | . . . 4 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | |
6 | 5 | adantld 492 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ ¬ 𝜑) → 𝜓)) |
7 | 4, 6 | jaod 857 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)) → 𝜓)) |
8 | 2, 7 | impbid 211 | 1 ⊢ (𝜑 → (𝜓 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 |
This theorem is referenced by: cases2 1046 pm4.42 1052 |
Copyright terms: Public domain | W3C validator |