MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdomgOLD Structured version   Visualization version   GIF version

Theorem brdomgOLD 8948
Description: Obsolete version of brdomg 8947 as of 29-Nov-2024. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
brdomgOLD (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem brdomgOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1eq2 6773 . . . . 5 (𝑥 = 𝐴 → (𝑓:𝑥1-1𝑦𝑓:𝐴1-1𝑦))
21exbidv 1916 . . . 4 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦))
3 f1eq3 6774 . . . . 5 (𝑦 = 𝐵 → (𝑓:𝐴1-1𝑦𝑓:𝐴1-1𝐵))
43exbidv 1916 . . . 4 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
5 df-dom 8936 . . . 4 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
62, 4, 5brabg 5529 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
76ex 412 . 2 (𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
8 reldom 8940 . . . . 5 Rel ≼
98brrelex1i 5722 . . . 4 (𝐴𝐵𝐴 ∈ V)
10 f1f 6777 . . . . . 6 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
11 fdm 6716 . . . . . . 7 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
12 vex 3470 . . . . . . . 8 𝑓 ∈ V
1312dmex 7895 . . . . . . 7 dom 𝑓 ∈ V
1411, 13eqeltrrdi 2834 . . . . . 6 (𝑓:𝐴𝐵𝐴 ∈ V)
1510, 14syl 17 . . . . 5 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
1615exlimiv 1925 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V)
179, 16pm5.21ni 377 . . 3 𝐴 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1817a1d 25 . 2 𝐴 ∈ V → (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
197, 18pm2.61i 182 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1533  wex 1773  wcel 2098  Vcvv 3466   class class class wbr 5138  dom cdm 5666  wf 6529  1-1wf1 6530  cdom 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677  df-fn 6536  df-f 6537  df-f1 6538  df-dom 8936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator