MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom Structured version   Visualization version   GIF version

Theorem brdom 9001
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1 𝐵 ∈ V
Assertion
Ref Expression
brdom (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem brdom
StepHypRef Expression
1 bren.1 . 2 𝐵 ∈ V
2 brdomg 8997 . 2 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779  wcel 2108  Vcvv 3480   class class class wbr 5143  1-1wf1 6558  cdom 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-cnv 5693  df-dm 5695  df-rn 5696  df-fn 6564  df-f 6565  df-f1 6566  df-dom 8987
This theorem is referenced by:  domen  9002  domtr  9047  sbthlem10  9132  sbthfilem  9238  1sdomOLD  9285  ac10ct  10074  domtriomlem  10482  2ndcdisj  23464  birthdaylem3  26996
  Copyright terms: Public domain W3C validator