MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom Structured version   Visualization version   GIF version

Theorem brdom 8825
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1 𝐵 ∈ V
Assertion
Ref Expression
brdom (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem brdom
StepHypRef Expression
1 bren.1 . 2 𝐵 ∈ V
2 brdomg 8821 . 2 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1781  wcel 2106  Vcvv 3442   class class class wbr 5096  1-1wf1 6480  cdom 8806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-xp 5630  df-rel 5631  df-cnv 5632  df-dm 5634  df-rn 5635  df-fn 6486  df-f 6487  df-f1 6488  df-dom 8810
This theorem is referenced by:  domen  8826  domtr  8872  sbthlem10  8961  sbthfilem  9070  1sdomOLD  9118  ac10ct  9895  domtriomlem  10303  2ndcdisj  22712  birthdaylem3  26208
  Copyright terms: Public domain W3C validator