Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brdom | Structured version Visualization version GIF version |
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
bren.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brdom | ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | brdomg 8703 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 –1-1→wf1 6415 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-fn 6421 df-f 6422 df-f1 6423 df-dom 8693 |
This theorem is referenced by: domen 8706 domtr 8748 sbthlem10 8832 sbthfilem 8941 1sdom 8955 ac10ct 9721 domtriomlem 10129 2ndcdisj 22515 birthdaylem3 26008 |
Copyright terms: Public domain | W3C validator |