| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brdom | Structured version Visualization version GIF version | ||
| Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| bren.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brdom | ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | brdomg 8881 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 –1-1→wf1 6478 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-fn 6484 df-f 6485 df-f1 6486 df-dom 8871 |
| This theorem is referenced by: domen 8884 domtr 8929 sbthlem10 9009 sbthfilem 9107 ac10ct 9925 domtriomlem 10333 2ndcdisj 23371 birthdaylem3 26890 |
| Copyright terms: Public domain | W3C validator |