Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brdom | Structured version Visualization version GIF version |
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
bren.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brdom | ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | brdomg 8821 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1781 ∈ wcel 2106 Vcvv 3442 class class class wbr 5096 –1-1→wf1 6480 ≼ cdom 8806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-xp 5630 df-rel 5631 df-cnv 5632 df-dm 5634 df-rn 5635 df-fn 6486 df-f 6487 df-f1 6488 df-dom 8810 |
This theorem is referenced by: domen 8826 domtr 8872 sbthlem10 8961 sbthfilem 9070 1sdomOLD 9118 ac10ct 9895 domtriomlem 10303 2ndcdisj 22712 birthdaylem3 26208 |
Copyright terms: Public domain | W3C validator |