MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom Structured version   Visualization version   GIF version

Theorem brdom 8958
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1 𝐵 ∈ V
Assertion
Ref Expression
brdom (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem brdom
StepHypRef Expression
1 bren.1 . 2 𝐵 ∈ V
2 brdomg 8954 . 2 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1781  wcel 2106  Vcvv 3474   class class class wbr 5148  1-1wf1 6540  cdom 8939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-fn 6546  df-f 6547  df-f1 6548  df-dom 8943
This theorem is referenced by:  domen  8959  domtr  9005  sbthlem10  9094  sbthfilem  9203  1sdomOLD  9251  ac10ct  10031  domtriomlem  10439  2ndcdisj  23180  birthdaylem3  26682
  Copyright terms: Public domain W3C validator