MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom2g Structured version   Visualization version   GIF version

Theorem brdom2g 8997
Description: Dominance relation. This variation of brdomg 8998 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of brdomg 8998. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
brdom2g ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem brdom2g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1eq2 6799 . . 3 (𝑥 = 𝐴 → (𝑓:𝑥1-1𝑦𝑓:𝐴1-1𝑦))
21exbidv 1920 . 2 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦))
3 f1eq3 6800 . . 3 (𝑦 = 𝐵 → (𝑓:𝐴1-1𝑦𝑓:𝐴1-1𝐵))
43exbidv 1920 . 2 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
5 df-dom 8988 . 2 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
62, 4, 5brabg 5543 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107   class class class wbr 5142  1-1wf1 6557  cdom 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-fn 6563  df-f 6564  df-f1 6565  df-dom 8988
This theorem is referenced by:  brdomg  8998  brdomi  9000  f1dom4g  9007  0domg  9141
  Copyright terms: Public domain W3C validator