MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom2g Structured version   Visualization version   GIF version

Theorem brdom2g 8880
Description: Dominance relation. This variation of brdomg 8881 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of brdomg 8881. (Revised by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
brdom2g ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem brdom2g
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1eq2 6715 . . 3 (𝑥 = 𝐴 → (𝑓:𝑥1-1𝑦𝑓:𝐴1-1𝑦))
21exbidv 1922 . 2 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦))
3 f1eq3 6716 . . 3 (𝑦 = 𝐵 → (𝑓:𝐴1-1𝑦𝑓:𝐴1-1𝐵))
43exbidv 1922 . 2 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
5 df-dom 8871 . 2 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
62, 4, 5brabg 5477 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111   class class class wbr 5089  1-1wf1 6478  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-fn 6484  df-f 6485  df-f1 6486  df-dom 8871
This theorem is referenced by:  brdomg  8881  brdomi  8882  f1dom4g  8888  0domg  9017
  Copyright terms: Public domain W3C validator