| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version | ||
| Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldom | ⊢ Rel ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dom 8920 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 2 | 1 | relopabiv 5783 | 1 ⊢ Rel ≼ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Rel wrel 5643 –1-1→wf1 6508 ≼ cdom 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-dom 8920 |
| This theorem is referenced by: relsdom 8925 brdomg 8930 brdomi 8931 ctex 8935 domssl 8969 domssr 8970 domtr 8978 undom 9029 xpdom2 9036 xpdom1g 9038 domunsncan 9041 sbth 9061 sbthcl 9063 fodomr 9092 pwdom 9093 domssex 9102 mapdom1 9106 mapdom2 9112 domtrfil 9156 sbthfi 9163 0sdom1dom 9185 1sdom2dom 9194 fineqv 9210 infsdomnn 9249 infsdomnnOLD 9250 infn0ALT 9252 elharval 9514 harword 9516 domwdom 9527 unxpwdom 9542 infdifsn 9610 infdiffi 9611 ac10ct 9987 djudom2 10137 djuinf 10142 infdju1 10143 pwdjuidm 10145 djulepw 10146 infdjuabs 10158 infunabs 10159 pwdjudom 10168 infpss 10169 infmap2 10170 fictb 10197 infpssALT 10266 fin34 10343 ttukeylem1 10462 fodomb 10479 wdomac 10480 brdom3 10481 iundom2g 10493 iundom 10495 infxpidm 10515 gchdomtri 10582 pwfseq 10617 pwxpndom2 10618 pwxpndom 10619 pwdjundom 10620 gchdjuidm 10621 gchpwdom 10623 gchaclem 10631 reexALT 12943 hashdomi 14345 1stcrestlem 23339 hauspwdom 23388 ufilen 23817 ovoliunnul 25408 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 nnfoctb 45042 rn1st 45267 meadjiun 46464 caragenunicl 46522 |
| Copyright terms: Public domain | W3C validator |