| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version | ||
| Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldom | ⊢ Rel ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dom 8969 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 2 | 1 | relopabiv 5810 | 1 ⊢ Rel ≼ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1778 Rel wrel 5670 –1-1→wf1 6538 ≼ cdom 8965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-ss 3948 df-opab 5186 df-xp 5671 df-rel 5672 df-dom 8969 |
| This theorem is referenced by: relsdom 8974 brdomg 8979 brdomgOLD 8980 brdomi 8981 brdomiOLD 8982 ctex 8986 domssl 9020 domssr 9021 domtr 9029 undom 9081 undomOLD 9082 xpdom2 9089 xpdom1g 9091 domunsncan 9094 sbth 9115 sbthcl 9117 dom0OLD 9125 fodomr 9150 pwdom 9151 domssex 9160 mapdom1 9164 mapdom2 9170 domtrfil 9214 sbthfi 9221 0sdom1dom 9256 1sdom2dom 9265 fineqv 9281 infsdomnn 9320 infsdomnnOLD 9321 infn0ALT 9323 elharval 9583 harword 9585 domwdom 9596 unxpwdom 9611 infdifsn 9679 infdiffi 9680 ac10ct 10056 djudom2 10206 djuinf 10211 infdju1 10212 pwdjuidm 10214 djulepw 10215 infdjuabs 10227 infunabs 10228 pwdjudom 10237 infpss 10238 infmap2 10239 fictb 10266 infpssALT 10335 fin34 10412 ttukeylem1 10531 fodomb 10548 wdomac 10549 brdom3 10550 iundom2g 10562 iundom 10564 infxpidm 10584 gchdomtri 10651 pwfseq 10686 pwxpndom2 10687 pwxpndom 10688 pwdjundom 10689 gchdjuidm 10690 gchpwdom 10692 gchaclem 10700 reexALT 13008 hashdomi 14401 1stcrestlem 23406 hauspwdom 23455 ufilen 23884 ovoliunnul 25478 ovoliunnfl 37628 voliunnfl 37630 volsupnfl 37631 nnfoctb 45010 rn1st 45237 meadjiun 46438 caragenunicl 46496 |
| Copyright terms: Public domain | W3C validator |