Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version |
Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
reldom | ⊢ Rel ≼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dom 8693 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel ≼ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1783 Rel wrel 5585 –1-1→wf1 6415 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-dom 8693 |
This theorem is referenced by: relsdom 8698 brdomg 8703 brdomi 8704 ctex 8708 domtr 8748 undom 8800 xpdom2 8807 xpdom1g 8809 domunsncan 8812 sbth 8833 sbthcl 8835 dom0 8841 fodomr 8864 pwdom 8865 domssex 8874 mapdom1 8878 mapdom2 8884 sbthfi 8942 fineqv 8967 infsdomnn 9005 infn0 9006 elharval 9250 harword 9252 domwdom 9263 unxpwdom 9278 infdifsn 9345 infdiffi 9346 ac10ct 9721 djudom2 9870 djuinf 9875 infdju1 9876 pwdjuidm 9878 djulepw 9879 infdjuabs 9893 infunabs 9894 pwdjudom 9903 infpss 9904 infmap2 9905 fictb 9932 infpssALT 10000 fin34 10077 ttukeylem1 10196 fodomb 10213 wdomac 10214 brdom3 10215 iundom2g 10227 iundom 10229 infxpidm 10249 gchdomtri 10316 pwfseq 10351 pwxpndom2 10352 pwxpndom 10353 pwdjundom 10354 gchdjuidm 10355 gchpwdom 10357 gchaclem 10365 reexALT 12653 hashdomi 14023 1stcrestlem 22511 hauspwdom 22560 ufilen 22989 ovoliunnul 24576 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 nnfoctb 42484 meadjiun 43894 caragenunicl 43952 |
Copyright terms: Public domain | W3C validator |