| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version | ||
| Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldom | ⊢ Rel ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dom 8961 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 2 | 1 | relopabiv 5799 | 1 ⊢ Rel ≼ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Rel wrel 5659 –1-1→wf1 6528 ≼ cdom 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-opab 5182 df-xp 5660 df-rel 5661 df-dom 8961 |
| This theorem is referenced by: relsdom 8966 brdomg 8971 brdomgOLD 8972 brdomi 8973 brdomiOLD 8974 ctex 8978 domssl 9012 domssr 9013 domtr 9021 undom 9073 undomOLD 9074 xpdom2 9081 xpdom1g 9083 domunsncan 9086 sbth 9107 sbthcl 9109 dom0OLD 9117 fodomr 9142 pwdom 9143 domssex 9152 mapdom1 9156 mapdom2 9162 domtrfil 9206 sbthfi 9213 0sdom1dom 9246 1sdom2dom 9255 fineqv 9271 infsdomnn 9310 infsdomnnOLD 9311 infn0ALT 9313 elharval 9575 harword 9577 domwdom 9588 unxpwdom 9603 infdifsn 9671 infdiffi 9672 ac10ct 10048 djudom2 10198 djuinf 10203 infdju1 10204 pwdjuidm 10206 djulepw 10207 infdjuabs 10219 infunabs 10220 pwdjudom 10229 infpss 10230 infmap2 10231 fictb 10258 infpssALT 10327 fin34 10404 ttukeylem1 10523 fodomb 10540 wdomac 10541 brdom3 10542 iundom2g 10554 iundom 10556 infxpidm 10576 gchdomtri 10643 pwfseq 10678 pwxpndom2 10679 pwxpndom 10680 pwdjundom 10681 gchdjuidm 10682 gchpwdom 10684 gchaclem 10692 reexALT 13000 hashdomi 14398 1stcrestlem 23390 hauspwdom 23439 ufilen 23868 ovoliunnul 25460 ovoliunnfl 37686 voliunnfl 37688 volsupnfl 37689 nnfoctb 45072 rn1st 45297 meadjiun 46495 caragenunicl 46553 |
| Copyright terms: Public domain | W3C validator |