![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version |
Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
reldom | ⊢ Rel ≼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dom 9005 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel ≼ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1777 Rel wrel 5705 –1-1→wf1 6570 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-dom 9005 |
This theorem is referenced by: relsdom 9010 brdomg 9016 brdomgOLD 9017 brdomi 9018 brdomiOLD 9019 ctex 9023 domssl 9058 domssr 9059 domtr 9067 undom 9125 undomOLD 9126 xpdom2 9133 xpdom1g 9135 domunsncan 9138 sbth 9159 sbthcl 9161 dom0OLD 9169 fodomr 9194 pwdom 9195 domssex 9204 mapdom1 9208 mapdom2 9214 domtrfil 9258 sbthfi 9265 0sdom1dom 9301 1sdom2dom 9310 fineqv 9326 infsdomnn 9366 infsdomnnOLD 9367 infn0ALT 9369 elharval 9630 harword 9632 domwdom 9643 unxpwdom 9658 infdifsn 9726 infdiffi 9727 ac10ct 10103 djudom2 10253 djuinf 10258 infdju1 10259 pwdjuidm 10261 djulepw 10262 infdjuabs 10274 infunabs 10275 pwdjudom 10284 infpss 10285 infmap2 10286 fictb 10313 infpssALT 10382 fin34 10459 ttukeylem1 10578 fodomb 10595 wdomac 10596 brdom3 10597 iundom2g 10609 iundom 10611 infxpidm 10631 gchdomtri 10698 pwfseq 10733 pwxpndom2 10734 pwxpndom 10735 pwdjundom 10736 gchdjuidm 10737 gchpwdom 10739 gchaclem 10747 reexALT 13049 hashdomi 14429 1stcrestlem 23481 hauspwdom 23530 ufilen 23959 ovoliunnul 25561 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 nnfoctb 44949 rn1st 45183 meadjiun 46387 caragenunicl 46445 |
Copyright terms: Public domain | W3C validator |