| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version | ||
| Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldom | ⊢ Rel ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dom 8871 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 2 | 1 | relopabiv 5760 | 1 ⊢ Rel ≼ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 Rel wrel 5621 –1-1→wf1 6478 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-opab 5154 df-xp 5622 df-rel 5623 df-dom 8871 |
| This theorem is referenced by: relsdom 8876 brdomg 8881 brdomi 8882 ctex 8886 domssl 8920 domssr 8921 domtr 8929 undom 8978 xpdom2 8985 xpdom1g 8987 domunsncan 8990 sbth 9010 sbthcl 9012 fodomr 9041 pwdom 9042 domssex 9051 mapdom1 9055 mapdom2 9061 domtrfil 9101 sbthfi 9108 0sdom1dom 9130 1sdom2dom 9138 fineqv 9151 infsdomnn 9185 infn0ALT 9187 elharval 9447 harword 9449 domwdom 9460 unxpwdom 9475 infdifsn 9547 infdiffi 9548 ac10ct 9922 djudom2 10072 djuinf 10077 infdju1 10078 pwdjuidm 10080 djulepw 10081 infdjuabs 10093 infunabs 10094 pwdjudom 10103 infpss 10104 infmap2 10105 fictb 10132 infpssALT 10201 fin34 10278 ttukeylem1 10397 fodomb 10414 wdomac 10415 brdom3 10416 iundom2g 10428 iundom 10430 infxpidm 10450 gchdomtri 10517 pwfseq 10552 pwxpndom2 10553 pwxpndom 10554 pwdjundom 10555 gchdjuidm 10556 gchpwdom 10558 gchaclem 10566 reexALT 12879 hashdomi 14284 1stcrestlem 23365 hauspwdom 23414 ufilen 23843 ovoliunnul 25433 ovoliunnfl 37701 voliunnfl 37703 volsupnfl 37704 nnfoctb 45084 rn1st 45309 meadjiun 46503 caragenunicl 46561 |
| Copyright terms: Public domain | W3C validator |