| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version | ||
| Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldom | ⊢ Rel ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dom 8881 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 2 | 1 | relopabiv 5767 | 1 ⊢ Rel ≼ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Rel wrel 5628 –1-1→wf1 6483 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-opab 5158 df-xp 5629 df-rel 5630 df-dom 8881 |
| This theorem is referenced by: relsdom 8886 brdomg 8891 brdomi 8892 ctex 8896 domssl 8930 domssr 8931 domtr 8939 undom 8989 xpdom2 8996 xpdom1g 8998 domunsncan 9001 sbth 9021 sbthcl 9023 fodomr 9052 pwdom 9053 domssex 9062 mapdom1 9066 mapdom2 9072 domtrfil 9116 sbthfi 9123 0sdom1dom 9145 1sdom2dom 9153 fineqv 9168 infsdomnn 9207 infsdomnnOLD 9208 infn0ALT 9210 elharval 9472 harword 9474 domwdom 9485 unxpwdom 9500 infdifsn 9572 infdiffi 9573 ac10ct 9947 djudom2 10097 djuinf 10102 infdju1 10103 pwdjuidm 10105 djulepw 10106 infdjuabs 10118 infunabs 10119 pwdjudom 10128 infpss 10129 infmap2 10130 fictb 10157 infpssALT 10226 fin34 10303 ttukeylem1 10422 fodomb 10439 wdomac 10440 brdom3 10441 iundom2g 10453 iundom 10455 infxpidm 10475 gchdomtri 10542 pwfseq 10577 pwxpndom2 10578 pwxpndom 10579 pwdjundom 10580 gchdjuidm 10581 gchpwdom 10583 gchaclem 10591 reexALT 12903 hashdomi 14305 1stcrestlem 23355 hauspwdom 23404 ufilen 23833 ovoliunnul 25424 ovoliunnfl 37641 voliunnfl 37643 volsupnfl 37644 nnfoctb 45026 rn1st 45251 meadjiun 46448 caragenunicl 46506 |
| Copyright terms: Public domain | W3C validator |