| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version | ||
| Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldom | ⊢ Rel ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dom 8877 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 2 | 1 | relopabiv 5764 | 1 ⊢ Rel ≼ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 Rel wrel 5624 –1-1→wf1 6483 ≼ cdom 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5156 df-xp 5625 df-rel 5626 df-dom 8877 |
| This theorem is referenced by: relsdom 8882 brdomg 8887 brdomi 8888 ctex 8892 domssl 8927 domssr 8928 domtr 8936 undom 8985 xpdom2 8992 xpdom1g 8994 domunsncan 8997 sbth 9017 sbthcl 9019 fodomr 9048 pwdom 9049 domssex 9058 mapdom1 9062 mapdom2 9068 domtrfil 9108 sbthfi 9115 0sdom1dom 9137 1sdom2dom 9145 fineqv 9158 infsdomnn 9192 infn0ALT 9194 elharval 9454 harword 9456 domwdom 9467 unxpwdom 9482 infdifsn 9554 infdiffi 9555 ac10ct 9932 djudom2 10082 djuinf 10087 infdju1 10088 pwdjuidm 10090 djulepw 10091 infdjuabs 10103 infunabs 10104 pwdjudom 10113 infpss 10114 infmap2 10115 fictb 10142 infpssALT 10211 fin34 10288 ttukeylem1 10407 fodomb 10424 wdomac 10425 brdom3 10426 iundom2g 10438 iundom 10440 infxpidm 10460 gchdomtri 10527 pwfseq 10562 pwxpndom2 10563 pwxpndom 10564 pwdjundom 10565 gchdjuidm 10566 gchpwdom 10568 gchaclem 10576 reexALT 12884 hashdomi 14289 1stcrestlem 23368 hauspwdom 23417 ufilen 23846 ovoliunnul 25436 ovoliunnfl 37722 voliunnfl 37724 volsupnfl 37725 nnfoctb 45169 rn1st 45394 meadjiun 46588 caragenunicl 46646 |
| Copyright terms: Public domain | W3C validator |