| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version | ||
| Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
| Ref | Expression |
|---|---|
| reldom | ⊢ Rel ≼ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dom 8923 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel ≼ |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 Rel wrel 5646 –1-1→wf1 6511 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-dom 8923 |
| This theorem is referenced by: relsdom 8928 brdomg 8933 brdomi 8934 ctex 8938 domssl 8972 domssr 8973 domtr 8981 undom 9033 undomOLD 9034 xpdom2 9041 xpdom1g 9043 domunsncan 9046 sbth 9067 sbthcl 9069 fodomr 9098 pwdom 9099 domssex 9108 mapdom1 9112 mapdom2 9118 domtrfil 9162 sbthfi 9169 0sdom1dom 9192 1sdom2dom 9201 fineqv 9217 infsdomnn 9256 infsdomnnOLD 9257 infn0ALT 9259 elharval 9521 harword 9523 domwdom 9534 unxpwdom 9549 infdifsn 9617 infdiffi 9618 ac10ct 9994 djudom2 10144 djuinf 10149 infdju1 10150 pwdjuidm 10152 djulepw 10153 infdjuabs 10165 infunabs 10166 pwdjudom 10175 infpss 10176 infmap2 10177 fictb 10204 infpssALT 10273 fin34 10350 ttukeylem1 10469 fodomb 10486 wdomac 10487 brdom3 10488 iundom2g 10500 iundom 10502 infxpidm 10522 gchdomtri 10589 pwfseq 10624 pwxpndom2 10625 pwxpndom 10626 pwdjundom 10627 gchdjuidm 10628 gchpwdom 10630 gchaclem 10638 reexALT 12950 hashdomi 14352 1stcrestlem 23346 hauspwdom 23395 ufilen 23824 ovoliunnul 25415 ovoliunnfl 37663 voliunnfl 37665 volsupnfl 37666 nnfoctb 45049 rn1st 45274 meadjiun 46471 caragenunicl 46529 |
| Copyright terms: Public domain | W3C validator |