Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version |
Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
reldom | ⊢ Rel ≼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dom 8534 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
2 | 1 | relopabiv 5666 | 1 ⊢ Rel ≼ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1781 Rel wrel 5532 –1-1→wf1 6336 ≼ cdom 8530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-ss 3877 df-opab 5098 df-xp 5533 df-rel 5534 df-dom 8534 |
This theorem is referenced by: relsdom 8539 brdomg 8542 brdomi 8543 ctex 8547 domtr 8585 undom 8631 xpdom2 8638 xpdom1g 8640 domunsncan 8643 sbth 8664 sbthcl 8666 dom0 8672 fodomr 8695 pwdom 8696 domssex 8705 mapdom1 8709 mapdom2 8715 fineqv 8776 infsdomnn 8817 infn0 8818 elharval 9063 harword 9065 domwdom 9076 unxpwdom 9091 infdifsn 9158 infdiffi 9159 ac10ct 9499 djudom2 9648 djuinf 9653 infdju1 9654 pwdjuidm 9656 djulepw 9657 infdjuabs 9671 infunabs 9672 pwdjudom 9681 infpss 9682 infmap2 9683 fictb 9710 infpssALT 9778 fin34 9855 ttukeylem1 9974 fodomb 9991 wdomac 9992 brdom3 9993 iundom2g 10005 iundom 10007 infxpidm 10027 gchdomtri 10094 pwfseq 10129 pwxpndom2 10130 pwxpndom 10131 pwdjundom 10132 gchdjuidm 10133 gchpwdom 10135 gchaclem 10143 reexALT 12429 hashdomi 13796 1stcrestlem 22157 hauspwdom 22206 ufilen 22635 ovoliunnul 24212 ovoliunnfl 35405 voliunnfl 35407 volsupnfl 35408 nnfoctb 42082 meadjiun 43499 caragenunicl 43557 |
Copyright terms: Public domain | W3C validator |