Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version |
Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
reldom | ⊢ Rel ≼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dom 8735 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel ≼ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1782 Rel wrel 5594 –1-1→wf1 6430 ≼ cdom 8731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-dom 8735 |
This theorem is referenced by: relsdom 8740 brdomg 8746 brdomgOLD 8747 brdomi 8748 brdomiOLD 8749 ctex 8753 domtr 8793 undom 8846 undomOLD 8847 xpdom2 8854 xpdom1g 8856 domunsncan 8859 sbth 8880 sbthcl 8882 dom0OLD 8890 fodomr 8915 pwdom 8916 domssex 8925 mapdom1 8929 mapdom2 8935 domtrfil 8978 sbthfi 8985 fineqv 9038 infsdomnn 9075 infn0 9076 elharval 9320 harword 9322 domwdom 9333 unxpwdom 9348 infdifsn 9415 infdiffi 9416 ac10ct 9790 djudom2 9939 djuinf 9944 infdju1 9945 pwdjuidm 9947 djulepw 9948 infdjuabs 9962 infunabs 9963 pwdjudom 9972 infpss 9973 infmap2 9974 fictb 10001 infpssALT 10069 fin34 10146 ttukeylem1 10265 fodomb 10282 wdomac 10283 brdom3 10284 iundom2g 10296 iundom 10298 infxpidm 10318 gchdomtri 10385 pwfseq 10420 pwxpndom2 10421 pwxpndom 10422 pwdjundom 10423 gchdjuidm 10424 gchpwdom 10426 gchaclem 10434 reexALT 12724 hashdomi 14095 1stcrestlem 22603 hauspwdom 22652 ufilen 23081 ovoliunnul 24671 ovoliunnfl 35819 voliunnfl 35821 volsupnfl 35822 nnfoctb 42595 meadjiun 44004 caragenunicl 44062 |
Copyright terms: Public domain | W3C validator |