![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldom | Structured version Visualization version GIF version |
Description: Dominance is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
reldom | ⊢ Rel ≼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dom 8986 | . 2 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
2 | 1 | relopabiv 5833 | 1 ⊢ Rel ≼ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1776 Rel wrel 5694 –1-1→wf1 6560 ≼ cdom 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-opab 5211 df-xp 5695 df-rel 5696 df-dom 8986 |
This theorem is referenced by: relsdom 8991 brdomg 8996 brdomgOLD 8997 brdomi 8998 brdomiOLD 8999 ctex 9003 domssl 9037 domssr 9038 domtr 9046 undom 9098 undomOLD 9099 xpdom2 9106 xpdom1g 9108 domunsncan 9111 sbth 9132 sbthcl 9134 dom0OLD 9142 fodomr 9167 pwdom 9168 domssex 9177 mapdom1 9181 mapdom2 9187 domtrfil 9230 sbthfi 9237 0sdom1dom 9272 1sdom2dom 9281 fineqv 9297 infsdomnn 9336 infsdomnnOLD 9337 infn0ALT 9339 elharval 9599 harword 9601 domwdom 9612 unxpwdom 9627 infdifsn 9695 infdiffi 9696 ac10ct 10072 djudom2 10222 djuinf 10227 infdju1 10228 pwdjuidm 10230 djulepw 10231 infdjuabs 10243 infunabs 10244 pwdjudom 10253 infpss 10254 infmap2 10255 fictb 10282 infpssALT 10351 fin34 10428 ttukeylem1 10547 fodomb 10564 wdomac 10565 brdom3 10566 iundom2g 10578 iundom 10580 infxpidm 10600 gchdomtri 10667 pwfseq 10702 pwxpndom2 10703 pwxpndom 10704 pwdjundom 10705 gchdjuidm 10706 gchpwdom 10708 gchaclem 10716 reexALT 13024 hashdomi 14416 1stcrestlem 23476 hauspwdom 23525 ufilen 23954 ovoliunnul 25556 ovoliunnfl 37649 voliunnfl 37651 volsupnfl 37652 nnfoctb 44987 rn1st 45219 meadjiun 46422 caragenunicl 46480 |
Copyright terms: Public domain | W3C validator |