MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdom2 Structured version   Visualization version   GIF version

Theorem dfdom2 8766
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
dfdom2 ≼ = ( ≺ ∪ ≈ )

Proof of Theorem dfdom2
StepHypRef Expression
1 df-sdom 8736 . . 3 ≺ = ( ≼ ∖ ≈ )
21uneq2i 4094 . 2 ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ ))
3 uncom 4087 . 2 ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ )
4 enssdom 8765 . . 3 ≈ ⊆ ≼
5 undif 4415 . . 3 ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ )
64, 5mpbi 229 . 2 ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼
72, 3, 63eqtr3ri 2775 1 ≼ = ( ≺ ∪ ≈ )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884  cun 3885  wss 3887  cen 8730  cdom 8731  csdm 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-xp 5595  df-rel 5596  df-f1o 6440  df-en 8734  df-dom 8735  df-sdom 8736
This theorem is referenced by:  brdom2  8770
  Copyright terms: Public domain W3C validator