MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdom2 Structured version   Visualization version   GIF version

Theorem dfdom2 8721
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
dfdom2 ≼ = ( ≺ ∪ ≈ )

Proof of Theorem dfdom2
StepHypRef Expression
1 df-sdom 8694 . . 3 ≺ = ( ≼ ∖ ≈ )
21uneq2i 4090 . 2 ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ ))
3 uncom 4083 . 2 ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ )
4 enssdom 8720 . . 3 ≈ ⊆ ≼
5 undif 4412 . . 3 ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ )
64, 5mpbi 229 . 2 ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼
72, 3, 63eqtr3ri 2775 1 ≼ = ( ≺ ∪ ≈ )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3880  cun 3881  wss 3883  cen 8688  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586  df-rel 5587  df-f1o 6425  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by:  brdom2  8725
  Copyright terms: Public domain W3C validator