Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfdom2 | Structured version Visualization version GIF version |
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
dfdom2 | ⊢ ≼ = ( ≺ ∪ ≈ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sdom 8736 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
2 | 1 | uneq2i 4094 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ )) |
3 | uncom 4087 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ ) | |
4 | enssdom 8765 | . . 3 ⊢ ≈ ⊆ ≼ | |
5 | undif 4415 | . . 3 ⊢ ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ ) | |
6 | 4, 5 | mpbi 229 | . 2 ⊢ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ |
7 | 2, 3, 6 | 3eqtr3ri 2775 | 1 ⊢ ≼ = ( ≺ ∪ ≈ ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-rel 5596 df-f1o 6440 df-en 8734 df-dom 8735 df-sdom 8736 |
This theorem is referenced by: brdom2 8770 |
Copyright terms: Public domain | W3C validator |