| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdom2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
| Ref | Expression |
|---|---|
| dfdom2 | ⊢ ≼ = ( ≺ ∪ ≈ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdom 8970 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 2 | 1 | uneq2i 4145 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ )) |
| 3 | uncom 4138 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ ) | |
| 4 | enssdom 8999 | . . 3 ⊢ ≈ ⊆ ≼ | |
| 5 | undif 4462 | . . 3 ⊢ ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ ) | |
| 6 | 4, 5 | mpbi 230 | . 2 ⊢ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ |
| 7 | 2, 3, 6 | 3eqtr3ri 2766 | 1 ⊢ ≼ = ( ≺ ∪ ≈ ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∖ cdif 3928 ∪ cun 3929 ⊆ wss 3931 ≈ cen 8964 ≼ cdom 8965 ≺ csdm 8966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5186 df-xp 5671 df-rel 5672 df-f1o 6548 df-en 8968 df-dom 8969 df-sdom 8970 |
| This theorem is referenced by: brdom2 9004 |
| Copyright terms: Public domain | W3C validator |