| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdom2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
| Ref | Expression |
|---|---|
| dfdom2 | ⊢ ≼ = ( ≺ ∪ ≈ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdom 8875 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 2 | 1 | uneq2i 4116 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ )) |
| 3 | uncom 4109 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ ) | |
| 4 | enssdom 8902 | . . 3 ⊢ ≈ ⊆ ≼ | |
| 5 | undif 4433 | . . 3 ⊢ ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ ) | |
| 6 | 4, 5 | mpbi 230 | . 2 ⊢ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ |
| 7 | 2, 3, 6 | 3eqtr3ri 2761 | 1 ⊢ ≼ = ( ≺ ∪ ≈ ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3900 ∪ cun 3901 ⊆ wss 3903 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5155 df-xp 5625 df-rel 5626 df-f1o 6489 df-en 8873 df-dom 8874 df-sdom 8875 |
| This theorem is referenced by: brdom2 8907 |
| Copyright terms: Public domain | W3C validator |