| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdom2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
| Ref | Expression |
|---|---|
| dfdom2 | ⊢ ≼ = ( ≺ ∪ ≈ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdom 8872 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
| 2 | 1 | uneq2i 4112 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ )) |
| 3 | uncom 4105 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ ) | |
| 4 | enssdom 8899 | . . 3 ⊢ ≈ ⊆ ≼ | |
| 5 | undif 4429 | . . 3 ⊢ ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ ) | |
| 6 | 4, 5 | mpbi 230 | . 2 ⊢ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ |
| 7 | 2, 3, 6 | 3eqtr3ri 2763 | 1 ⊢ ≼ = ( ≺ ∪ ≈ ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3894 ∪ cun 3895 ⊆ wss 3897 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-rel 5621 df-f1o 6488 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: brdom2 8904 |
| Copyright terms: Public domain | W3C validator |