![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdom2 | Structured version Visualization version GIF version |
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
dfdom2 | ⊢ ≼ = ( ≺ ∪ ≈ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sdom 9006 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
2 | 1 | uneq2i 4188 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ )) |
3 | uncom 4181 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ ) | |
4 | enssdom 9037 | . . 3 ⊢ ≈ ⊆ ≼ | |
5 | undif 4505 | . . 3 ⊢ ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ ) | |
6 | 4, 5 | mpbi 230 | . 2 ⊢ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ |
7 | 2, 3, 6 | 3eqtr3ri 2777 | 1 ⊢ ≼ = ( ≺ ∪ ≈ ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-rel 5707 df-f1o 6580 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: brdom2 9042 |
Copyright terms: Public domain | W3C validator |