![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdom2 | Structured version Visualization version GIF version |
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
dfdom2 | ⊢ ≼ = ( ≺ ∪ ≈ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sdom 8367 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
2 | 1 | uneq2i 4063 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ )) |
3 | uncom 4056 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ ) | |
4 | enssdom 8389 | . . 3 ⊢ ≈ ⊆ ≼ | |
5 | undif 4350 | . . 3 ⊢ ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ ) | |
6 | 4, 5 | mpbi 231 | . 2 ⊢ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ |
7 | 2, 3, 6 | 3eqtr3ri 2830 | 1 ⊢ ≼ = ( ≺ ∪ ≈ ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1525 ∖ cdif 3862 ∪ cun 3863 ⊆ wss 3865 ≈ cen 8361 ≼ cdom 8362 ≺ csdm 8363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-opab 5031 df-xp 5456 df-rel 5457 df-f1o 6239 df-en 8365 df-dom 8366 df-sdom 8367 |
This theorem is referenced by: brdom2 8394 |
Copyright terms: Public domain | W3C validator |