MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdom2 Structured version   Visualization version   GIF version

Theorem dfdom2 8390
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
dfdom2 ≼ = ( ≺ ∪ ≈ )

Proof of Theorem dfdom2
StepHypRef Expression
1 df-sdom 8367 . . 3 ≺ = ( ≼ ∖ ≈ )
21uneq2i 4063 . 2 ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ ))
3 uncom 4056 . 2 ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ )
4 enssdom 8389 . . 3 ≈ ⊆ ≼
5 undif 4350 . . 3 ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ )
64, 5mpbi 231 . 2 ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼
72, 3, 63eqtr3ri 2830 1 ≼ = ( ≺ ∪ ≈ )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1525  cdif 3862  cun 3863  wss 3865  cen 8361  cdom 8362  csdm 8363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-opab 5031  df-xp 5456  df-rel 5457  df-f1o 6239  df-en 8365  df-dom 8366  df-sdom 8367
This theorem is referenced by:  brdom2  8394
  Copyright terms: Public domain W3C validator