MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdom2 Structured version   Visualization version   GIF version

Theorem dfdom2 9038
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
dfdom2 ≼ = ( ≺ ∪ ≈ )

Proof of Theorem dfdom2
StepHypRef Expression
1 df-sdom 9006 . . 3 ≺ = ( ≼ ∖ ≈ )
21uneq2i 4188 . 2 ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ ))
3 uncom 4181 . 2 ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ )
4 enssdom 9037 . . 3 ≈ ⊆ ≼
5 undif 4505 . . 3 ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ )
64, 5mpbi 230 . 2 ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼
72, 3, 63eqtr3ri 2777 1 ≼ = ( ≺ ∪ ≈ )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973  cun 3974  wss 3976  cen 9000  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-xp 5706  df-rel 5707  df-f1o 6580  df-en 9004  df-dom 9005  df-sdom 9006
This theorem is referenced by:  brdom2  9042
  Copyright terms: Public domain W3C validator