MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdom2 Structured version   Visualization version   GIF version

Theorem dfdom2 9017
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.)
Assertion
Ref Expression
dfdom2 ≼ = ( ≺ ∪ ≈ )

Proof of Theorem dfdom2
StepHypRef Expression
1 df-sdom 8987 . . 3 ≺ = ( ≼ ∖ ≈ )
21uneq2i 4175 . 2 ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ ))
3 uncom 4168 . 2 ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ )
4 enssdom 9016 . . 3 ≈ ⊆ ≼
5 undif 4488 . . 3 ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ )
64, 5mpbi 230 . 2 ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼
72, 3, 63eqtr3ri 2772 1 ≼ = ( ≺ ∪ ≈ )
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3960  cun 3961  wss 3963  cen 8981  cdom 8982  csdm 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-xp 5695  df-rel 5696  df-f1o 6570  df-en 8985  df-dom 8986  df-sdom 8987
This theorem is referenced by:  brdom2  9021
  Copyright terms: Public domain W3C validator