Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfdom2 | Structured version Visualization version GIF version |
Description: Alternate definition of dominance. (Contributed by NM, 17-Jun-1998.) |
Ref | Expression |
---|---|
dfdom2 | ⊢ ≼ = ( ≺ ∪ ≈ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sdom 8530 | . . 3 ⊢ ≺ = ( ≼ ∖ ≈ ) | |
2 | 1 | uneq2i 4065 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≈ ∪ ( ≼ ∖ ≈ )) |
3 | uncom 4058 | . 2 ⊢ ( ≈ ∪ ≺ ) = ( ≺ ∪ ≈ ) | |
4 | enssdom 8552 | . . 3 ⊢ ≈ ⊆ ≼ | |
5 | undif 4378 | . . 3 ⊢ ( ≈ ⊆ ≼ ↔ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ ) | |
6 | 4, 5 | mpbi 233 | . 2 ⊢ ( ≈ ∪ ( ≼ ∖ ≈ )) = ≼ |
7 | 2, 3, 6 | 3eqtr3ri 2790 | 1 ⊢ ≼ = ( ≺ ∪ ≈ ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∖ cdif 3855 ∪ cun 3856 ⊆ wss 3858 ≈ cen 8524 ≼ cdom 8525 ≺ csdm 8526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-opab 5095 df-xp 5530 df-rel 5531 df-f1o 6342 df-en 8528 df-dom 8529 df-sdom 8530 |
This theorem is referenced by: brdom2 8557 |
Copyright terms: Public domain | W3C validator |