MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domen Structured version   Visualization version   GIF version

Theorem domen 8963
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1 𝐵 ∈ V
Assertion
Ref Expression
domen (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem domen
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren.1 . . 3 𝐵 ∈ V
21brdom 8962 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
3 vex 3477 . . . . . 6 𝑓 ∈ V
43f11o 7937 . . . . 5 (𝑓:𝐴1-1𝐵 ↔ ∃𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
54exbii 1849 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑓𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
6 excom 2161 . . . 4 (∃𝑓𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵) ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
75, 6bitri 275 . . 3 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
8 bren 8955 . . . . . 6 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
98anbi1i 623 . . . . 5 ((𝐴𝑥𝑥𝐵) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝑥𝑥𝐵))
10 19.41v 1952 . . . . 5 (∃𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝑥𝑥𝐵))
119, 10bitr4i 278 . . . 4 ((𝐴𝑥𝑥𝐵) ↔ ∃𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
1211exbii 1849 . . 3 (∃𝑥(𝐴𝑥𝑥𝐵) ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
137, 12bitr4i 278 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
142, 13bitri 275 1 (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1780  wcel 2105  Vcvv 3473  wss 3948   class class class wbr 5148  1-1wf1 6540  1-1-ontowf1o 6542  cen 8942  cdom 8943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-en 8946  df-dom 8947
This theorem is referenced by:  domeng  8964  infcntss  9327  ramub2  16954  ram0  16962
  Copyright terms: Public domain W3C validator