MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domen Structured version   Visualization version   GIF version

Theorem domen 8522
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1 𝐵 ∈ V
Assertion
Ref Expression
domen (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem domen
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren.1 . . 3 𝐵 ∈ V
21brdom 8521 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
3 vex 3497 . . . . . 6 𝑓 ∈ V
43f11o 7648 . . . . 5 (𝑓:𝐴1-1𝐵 ↔ ∃𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
54exbii 1848 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑓𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
6 excom 2169 . . . 4 (∃𝑓𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵) ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
75, 6bitri 277 . . 3 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
8 bren 8518 . . . . . 6 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
98anbi1i 625 . . . . 5 ((𝐴𝑥𝑥𝐵) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝑥𝑥𝐵))
10 19.41v 1950 . . . . 5 (∃𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝑥𝑥𝐵))
119, 10bitr4i 280 . . . 4 ((𝐴𝑥𝑥𝐵) ↔ ∃𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
1211exbii 1848 . . 3 (∃𝑥(𝐴𝑥𝑥𝐵) ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
137, 12bitr4i 280 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
142, 13bitri 277 1 (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wex 1780  wcel 2114  Vcvv 3494  wss 3936   class class class wbr 5066  1-1wf1 6352  1-1-ontowf1o 6354  cen 8506  cdom 8507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-dm 5565  df-rn 5566  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-en 8510  df-dom 8511
This theorem is referenced by:  domeng  8523  infcntss  8792  ramub2  16350  ram0  16358
  Copyright terms: Public domain W3C validator