MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domen Structured version   Visualization version   GIF version

Theorem domen 8505
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1 𝐵 ∈ V
Assertion
Ref Expression
domen (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem domen
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren.1 . . 3 𝐵 ∈ V
21brdom 8504 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)
3 vex 3444 . . . . . 6 𝑓 ∈ V
43f11o 7630 . . . . 5 (𝑓:𝐴1-1𝐵 ↔ ∃𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
54exbii 1849 . . . 4 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑓𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
6 excom 2166 . . . 4 (∃𝑓𝑥(𝑓:𝐴1-1-onto𝑥𝑥𝐵) ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
75, 6bitri 278 . . 3 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
8 bren 8501 . . . . . 6 (𝐴𝑥 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝑥)
98anbi1i 626 . . . . 5 ((𝐴𝑥𝑥𝐵) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝑥𝑥𝐵))
10 19.41v 1950 . . . . 5 (∃𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝑥𝑥𝐵))
119, 10bitr4i 281 . . . 4 ((𝐴𝑥𝑥𝐵) ↔ ∃𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
1211exbii 1849 . . 3 (∃𝑥(𝐴𝑥𝑥𝐵) ↔ ∃𝑥𝑓(𝑓:𝐴1-1-onto𝑥𝑥𝐵))
137, 12bitr4i 281 . 2 (∃𝑓 𝑓:𝐴1-1𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
142, 13bitri 278 1 (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wex 1781  wcel 2111  Vcvv 3441  wss 3881   class class class wbr 5030  1-1wf1 6321  1-1-ontowf1o 6323  cen 8489  cdom 8490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-cnv 5527  df-dm 5529  df-rn 5530  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-en 8493  df-dom 8494
This theorem is referenced by:  domeng  8506  infcntss  8776  ramub2  16340  ram0  16348
  Copyright terms: Public domain W3C validator