Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclim Structured version   Visualization version   GIF version

Theorem subfaclim 32437
Description: The subfactorial converges rapidly to 𝑁! / e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfaclim (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfaclim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11907 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 13646 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
31, 2syl 17 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
43nncnd 11656 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℂ)
5 ere 15444 . . . . . . 7 e ∈ ℝ
65recni 10657 . . . . . 6 e ∈ ℂ
7 epos 15562 . . . . . . 7 0 < e
85, 7gt0ne0ii 11178 . . . . . 6 e ≠ 0
9 divcl 11306 . . . . . 6 (((!‘𝑁) ∈ ℂ ∧ e ∈ ℂ ∧ e ≠ 0) → ((!‘𝑁) / e) ∈ ℂ)
106, 8, 9mp3an23 1449 . . . . 5 ((!‘𝑁) ∈ ℂ → ((!‘𝑁) / e) ∈ ℂ)
114, 10syl 17 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) / e) ∈ ℂ)
12 derang.d . . . . . . . 8 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
13 subfac.n . . . . . . . 8 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
1412, 13subfacf 32424 . . . . . . 7 𝑆:ℕ0⟶ℕ0
1514ffvelrni 6852 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
161, 15syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
1716nn0cnd 11960 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℂ)
1811, 17subcld 10999 . . 3 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
1918abscld 14798 . 2 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ∈ ℝ)
20 peano2nn 11652 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
2120peano2nnd 11657 . . . 4 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
2221nnred 11655 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℝ)
2320, 20nnmulcld 11693 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ)
2422, 23nndivred 11694 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) ∈ ℝ)
25 nnrecre 11682 . 2 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
26 eqid 2823 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))
27 eqid 2823 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (((abs‘-1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘-1)↑𝑛) / (!‘𝑛)))
28 eqid 2823 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((((abs‘-1)↑(𝑁 + 1)) / (!‘(𝑁 + 1))) · ((1 / ((𝑁 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘-1)↑(𝑁 + 1)) / (!‘(𝑁 + 1))) · ((1 / ((𝑁 + 1) + 1))↑𝑛)))
29 neg1cn 11754 . . . . . . 7 -1 ∈ ℂ
3029a1i 11 . . . . . 6 (𝑁 ∈ ℕ → -1 ∈ ℂ)
31 ax-1cn 10597 . . . . . . . . . 10 1 ∈ ℂ
3231absnegi 14762 . . . . . . . . 9 (abs‘-1) = (abs‘1)
33 abs1 14659 . . . . . . . . 9 (abs‘1) = 1
3432, 33eqtri 2846 . . . . . . . 8 (abs‘-1) = 1
35 1le1 11270 . . . . . . . 8 1 ≤ 1
3634, 35eqbrtri 5089 . . . . . . 7 (abs‘-1) ≤ 1
3736a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (abs‘-1) ≤ 1)
3826, 27, 28, 20, 30, 37eftlub 15464 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
3920nnnn0d 11958 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
40 eluznn0 12320 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
4139, 40sylan 582 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
4226eftval 15432 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
4341, 42syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
4443sumeq2dv 15062 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))
4544fveq2d 6676 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
4634oveq1i 7168 . . . . . . . 8 ((abs‘-1)↑(𝑁 + 1)) = (1↑(𝑁 + 1))
4720nnzd 12089 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℤ)
48 1exp 13461 . . . . . . . . 9 ((𝑁 + 1) ∈ ℤ → (1↑(𝑁 + 1)) = 1)
4947, 48syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (1↑(𝑁 + 1)) = 1)
5046, 49syl5eq 2870 . . . . . . 7 (𝑁 ∈ ℕ → ((abs‘-1)↑(𝑁 + 1)) = 1)
5150oveq1d 7173 . . . . . 6 (𝑁 ∈ ℕ → (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (1 · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
52 faccl 13646 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
5339, 52syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) ∈ ℕ)
5453, 20nnmulcld 11693 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ∈ ℕ)
5522, 54nndivred 11694 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℝ)
5655recnd 10671 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℂ)
5756mulid2d 10661 . . . . . 6 (𝑁 ∈ ℕ → (1 · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
5851, 57eqtrd 2858 . . . . 5 (𝑁 ∈ ℕ → (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
5938, 45, 583brtr3d 5099 . . . 4 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
60 eqid 2823 . . . . . . 7 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
61 eftcl 15429 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6229, 61mpan 688 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6341, 62syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6426eftlcvg 15461 . . . . . . . 8 ((-1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → seq(𝑁 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
6529, 39, 64sylancr 589 . . . . . . 7 (𝑁 ∈ ℕ → seq(𝑁 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
6660, 47, 43, 63, 65isumcl 15118 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6766abscld 14798 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℝ)
683nnred 11655 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ)
693nngt0d 11689 . . . . 5 (𝑁 ∈ ℕ → 0 < (!‘𝑁))
70 lemul2 11495 . . . . 5 (((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℝ ∧ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 < (!‘𝑁))) → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ↔ ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))))
7167, 55, 68, 69, 70syl112anc 1370 . . . 4 (𝑁 ∈ ℕ → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ↔ ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))))
7259, 71mpbid 234 . . 3 (𝑁 ∈ ℕ → ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
7312, 13subfacval2 32436 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
741, 73syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
75 nncn 11648 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
76 pncan 10894 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
7775, 31, 76sylancl 588 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
7877oveq2d 7174 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0...((𝑁 + 1) − 1)) = (0...𝑁))
7978sumeq1d 15060 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘)))
8079oveq2d 7174 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
8174, 80eqtr4d 2861 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))))
8281oveq1d 7173 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
83 divrec 11316 . . . . . . . . . 10 (((!‘𝑁) ∈ ℂ ∧ e ∈ ℂ ∧ e ≠ 0) → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
846, 8, 83mp3an23 1449 . . . . . . . . 9 ((!‘𝑁) ∈ ℂ → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
854, 84syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
86 df-e 15424 . . . . . . . . . . . 12 e = (exp‘1)
8786oveq2i 7169 . . . . . . . . . . 11 (1 / e) = (1 / (exp‘1))
88 efneg 15453 . . . . . . . . . . . 12 (1 ∈ ℂ → (exp‘-1) = (1 / (exp‘1)))
8931, 88ax-mp 5 . . . . . . . . . . 11 (exp‘-1) = (1 / (exp‘1))
90 efval 15435 . . . . . . . . . . . 12 (-1 ∈ ℂ → (exp‘-1) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘)))
9129, 90ax-mp 5 . . . . . . . . . . 11 (exp‘-1) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘))
9287, 89, 913eqtr2i 2852 . . . . . . . . . 10 (1 / e) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘))
93 nn0uz 12283 . . . . . . . . . . 11 0 = (ℤ‘0)
9442adantl 484 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
9562adantl 484 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
96 0nn0 11915 . . . . . . . . . . . . 13 0 ∈ ℕ0
9726eftlcvg 15461 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ 0 ∈ ℕ0) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
9829, 96, 97mp2an 690 . . . . . . . . . . . 12 seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝
9998a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
10093, 60, 39, 94, 95, 99isumsplit 15197 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘)) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
10192, 100syl5eq 2870 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / e) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
102101oveq2d 7174 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) · (1 / e)) = ((!‘𝑁) · (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
103 fzfid 13344 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0...((𝑁 + 1) − 1)) ∈ Fin)
104 elfznn0 13003 . . . . . . . . . . . 12 (𝑘 ∈ (0...((𝑁 + 1) − 1)) → 𝑘 ∈ ℕ0)
105104adantl 484 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((𝑁 + 1) − 1))) → 𝑘 ∈ ℕ0)
10629, 105, 61sylancr 589 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((𝑁 + 1) − 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
107103, 106fsumcl 15092 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1084, 107, 66adddid 10667 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) · (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
10985, 102, 1083eqtrd 2862 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) / e) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
11082, 109eqtr4d 2861 . . . . . 6 (𝑁 ∈ ℕ → ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) / e))
1114, 66mulcld 10663 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℂ)
11211, 17, 111subaddd 11017 . . . . . 6 (𝑁 ∈ ℕ → ((((!‘𝑁) / e) − (𝑆𝑁)) = ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ↔ ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) / e)))
113110, 112mpbird 259 . . . . 5 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) = ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
114113fveq2d 6676 . . . 4 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (abs‘((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
1154, 66absmuld 14816 . . . 4 (𝑁 ∈ ℕ → (abs‘((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((abs‘(!‘𝑁)) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
1163nnnn0d 11958 . . . . . . 7 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ0)
117116nn0ge0d 11961 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (!‘𝑁))
11868, 117absidd 14784 . . . . 5 (𝑁 ∈ ℕ → (abs‘(!‘𝑁)) = (!‘𝑁))
119118oveq1d 7173 . . . 4 (𝑁 ∈ ℕ → ((abs‘(!‘𝑁)) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
120114, 115, 1193eqtrd 2862 . . 3 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
121 facp1 13641 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
1221, 121syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
123122oveq1d 7173 . . . . . 6 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 1)))
12420nncnd 11656 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
1254, 124, 124mulassd 10666 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 1)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1))))
126123, 125eqtr2d 2859 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1))) = ((!‘(𝑁 + 1)) · (𝑁 + 1)))
127126oveq2d 7174 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1)))) = (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
12821nncnd 11656 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℂ)
12923nncnd 11656 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℂ)
13023nnne0d 11690 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ≠ 0)
1313nnne0d 11690 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ≠ 0)
132128, 129, 4, 130, 131divcan5d 11444 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))))
13354nncnd 11656 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ∈ ℂ)
13454nnne0d 11690 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ≠ 0)
1354, 128, 133, 134divassd 11453 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) = ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
136127, 132, 1353eqtr3d 2866 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) = ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
13772, 120, 1363brtr4d 5100 . 2 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ≤ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))))
138 nnmulcl 11664 . . . . . . 7 ((((𝑁 + 1) + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑁 + 1) + 1) · 𝑁) ∈ ℕ)
13921, 138mpancom 686 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) ∈ ℕ)
140139nnred 11655 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) ∈ ℝ)
141140ltp1d 11572 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) < ((((𝑁 + 1) + 1) · 𝑁) + 1))
142129mulid2d 10661 . . . . 5 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) · (𝑁 + 1))) = ((𝑁 + 1) · (𝑁 + 1)))
14331a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℂ)
14475, 143, 124adddird 10668 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) = ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))))
14575, 124mulcomd 10664 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) = ((𝑁 + 1) · 𝑁))
146124mulid2d 10661 . . . . . . 7 (𝑁 ∈ ℕ → (1 · (𝑁 + 1)) = (𝑁 + 1))
147145, 146oveq12d 7176 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
148124, 143, 75adddird 10668 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) = (((𝑁 + 1) · 𝑁) + (1 · 𝑁)))
149148oveq1d 7173 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) + 1) = ((((𝑁 + 1) · 𝑁) + (1 · 𝑁)) + 1))
15075mulid2d 10661 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 · 𝑁) = 𝑁)
151150oveq2d 7174 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) + (1 · 𝑁)) = (((𝑁 + 1) · 𝑁) + 𝑁))
152151oveq1d 7173 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) · 𝑁) + (1 · 𝑁)) + 1) = ((((𝑁 + 1) · 𝑁) + 𝑁) + 1))
153124, 75mulcld 10663 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) ∈ ℂ)
154153, 75, 143addassd 10665 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) · 𝑁) + 𝑁) + 1) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
155149, 152, 1543eqtrd 2862 . . . . . 6 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) + 1) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
156147, 155eqtr4d 2861 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))) = ((((𝑁 + 1) + 1) · 𝑁) + 1))
157142, 144, 1563eqtrd 2862 . . . 4 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) · (𝑁 + 1))) = ((((𝑁 + 1) + 1) · 𝑁) + 1))
158141, 157breqtrrd 5096 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))))
159 nnre 11647 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
160 nngt0 11671 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
161159, 160jca 514 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
162 1red 10644 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℝ)
163 nnre 11647 . . . . . 6 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ)
164 nngt0 11671 . . . . . 6 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → 0 < ((𝑁 + 1) · (𝑁 + 1)))
165163, 164jca 514 . . . . 5 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))
16623, 165syl 17 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))
167 lt2mul2div 11520 . . . 4 (((((𝑁 + 1) + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) ∧ (1 ∈ ℝ ∧ (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))) → ((((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))) ↔ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁)))
16822, 161, 162, 166, 167syl22anc 836 . . 3 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))) ↔ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁)))
169158, 168mpbid 234 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁))
17019, 24, 25, 137, 169lelttrd 10800 1 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  wne 3018  wral 3140   class class class wbr 5068  cmpt 5148  dom cdm 5557  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  seqcseq 13372  cexp 13432  !cfa 13636  chash 13693  abscabs 14595  cli 14843  Σcsu 15044  expce 15417  eceu 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-e 15424
This theorem is referenced by:  subfacval3  32438
  Copyright terms: Public domain W3C validator