Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclim Structured version   Visualization version   GIF version

Theorem subfaclim 32509
Description: The subfactorial converges rapidly to 𝑁! / e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfaclim (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfaclim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11892 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 13639 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
31, 2syl 17 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
43nncnd 11641 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℂ)
5 ere 15433 . . . . . . 7 e ∈ ℝ
65recni 10644 . . . . . 6 e ∈ ℂ
7 epos 15551 . . . . . . 7 0 < e
85, 7gt0ne0ii 11165 . . . . . 6 e ≠ 0
9 divcl 11293 . . . . . 6 (((!‘𝑁) ∈ ℂ ∧ e ∈ ℂ ∧ e ≠ 0) → ((!‘𝑁) / e) ∈ ℂ)
106, 8, 9mp3an23 1450 . . . . 5 ((!‘𝑁) ∈ ℂ → ((!‘𝑁) / e) ∈ ℂ)
114, 10syl 17 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) / e) ∈ ℂ)
12 derang.d . . . . . . . 8 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
13 subfac.n . . . . . . . 8 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
1412, 13subfacf 32496 . . . . . . 7 𝑆:ℕ0⟶ℕ0
1514ffvelrni 6832 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
161, 15syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
1716nn0cnd 11945 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℂ)
1811, 17subcld 10986 . . 3 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
1918abscld 14787 . 2 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ∈ ℝ)
20 peano2nn 11637 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
2120peano2nnd 11642 . . . 4 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
2221nnred 11640 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℝ)
2320, 20nnmulcld 11678 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ)
2422, 23nndivred 11679 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) ∈ ℝ)
25 nnrecre 11667 . 2 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
26 eqid 2822 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))
27 eqid 2822 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (((abs‘-1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘-1)↑𝑛) / (!‘𝑛)))
28 eqid 2822 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((((abs‘-1)↑(𝑁 + 1)) / (!‘(𝑁 + 1))) · ((1 / ((𝑁 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘-1)↑(𝑁 + 1)) / (!‘(𝑁 + 1))) · ((1 / ((𝑁 + 1) + 1))↑𝑛)))
29 neg1cn 11739 . . . . . . 7 -1 ∈ ℂ
3029a1i 11 . . . . . 6 (𝑁 ∈ ℕ → -1 ∈ ℂ)
31 ax-1cn 10584 . . . . . . . . . 10 1 ∈ ℂ
3231absnegi 14751 . . . . . . . . 9 (abs‘-1) = (abs‘1)
33 abs1 14648 . . . . . . . . 9 (abs‘1) = 1
3432, 33eqtri 2845 . . . . . . . 8 (abs‘-1) = 1
35 1le1 11257 . . . . . . . 8 1 ≤ 1
3634, 35eqbrtri 5063 . . . . . . 7 (abs‘-1) ≤ 1
3736a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (abs‘-1) ≤ 1)
3826, 27, 28, 20, 30, 37eftlub 15453 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
3920nnnn0d 11943 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
40 eluznn0 12305 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
4139, 40sylan 583 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
4226eftval 15421 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
4341, 42syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
4443sumeq2dv 15051 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))
4544fveq2d 6656 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
4634oveq1i 7150 . . . . . . . 8 ((abs‘-1)↑(𝑁 + 1)) = (1↑(𝑁 + 1))
4720nnzd 12074 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℤ)
48 1exp 13454 . . . . . . . . 9 ((𝑁 + 1) ∈ ℤ → (1↑(𝑁 + 1)) = 1)
4947, 48syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (1↑(𝑁 + 1)) = 1)
5046, 49syl5eq 2869 . . . . . . 7 (𝑁 ∈ ℕ → ((abs‘-1)↑(𝑁 + 1)) = 1)
5150oveq1d 7155 . . . . . 6 (𝑁 ∈ ℕ → (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (1 · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
52 faccl 13639 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
5339, 52syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) ∈ ℕ)
5453, 20nnmulcld 11678 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ∈ ℕ)
5522, 54nndivred 11679 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℝ)
5655recnd 10658 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℂ)
5756mulid2d 10648 . . . . . 6 (𝑁 ∈ ℕ → (1 · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
5851, 57eqtrd 2857 . . . . 5 (𝑁 ∈ ℕ → (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
5938, 45, 583brtr3d 5073 . . . 4 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
60 eqid 2822 . . . . . . 7 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
61 eftcl 15418 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6229, 61mpan 689 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6341, 62syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6426eftlcvg 15450 . . . . . . . 8 ((-1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → seq(𝑁 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
6529, 39, 64sylancr 590 . . . . . . 7 (𝑁 ∈ ℕ → seq(𝑁 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
6660, 47, 43, 63, 65isumcl 15107 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6766abscld 14787 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℝ)
683nnred 11640 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ)
693nngt0d 11674 . . . . 5 (𝑁 ∈ ℕ → 0 < (!‘𝑁))
70 lemul2 11482 . . . . 5 (((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℝ ∧ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 < (!‘𝑁))) → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ↔ ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))))
7167, 55, 68, 69, 70syl112anc 1371 . . . 4 (𝑁 ∈ ℕ → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ↔ ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))))
7259, 71mpbid 235 . . 3 (𝑁 ∈ ℕ → ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
7312, 13subfacval2 32508 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
741, 73syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
75 nncn 11633 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
76 pncan 10881 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
7775, 31, 76sylancl 589 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
7877oveq2d 7156 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0...((𝑁 + 1) − 1)) = (0...𝑁))
7978sumeq1d 15049 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘)))
8079oveq2d 7156 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
8174, 80eqtr4d 2860 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))))
8281oveq1d 7155 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
83 divrec 11303 . . . . . . . . . 10 (((!‘𝑁) ∈ ℂ ∧ e ∈ ℂ ∧ e ≠ 0) → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
846, 8, 83mp3an23 1450 . . . . . . . . 9 ((!‘𝑁) ∈ ℂ → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
854, 84syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
86 df-e 15413 . . . . . . . . . . . 12 e = (exp‘1)
8786oveq2i 7151 . . . . . . . . . . 11 (1 / e) = (1 / (exp‘1))
88 efneg 15442 . . . . . . . . . . . 12 (1 ∈ ℂ → (exp‘-1) = (1 / (exp‘1)))
8931, 88ax-mp 5 . . . . . . . . . . 11 (exp‘-1) = (1 / (exp‘1))
90 efval 15424 . . . . . . . . . . . 12 (-1 ∈ ℂ → (exp‘-1) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘)))
9129, 90ax-mp 5 . . . . . . . . . . 11 (exp‘-1) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘))
9287, 89, 913eqtr2i 2851 . . . . . . . . . 10 (1 / e) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘))
93 nn0uz 12268 . . . . . . . . . . 11 0 = (ℤ‘0)
9442adantl 485 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
9562adantl 485 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
96 0nn0 11900 . . . . . . . . . . . . 13 0 ∈ ℕ0
9726eftlcvg 15450 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ 0 ∈ ℕ0) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
9829, 96, 97mp2an 691 . . . . . . . . . . . 12 seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝
9998a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
10093, 60, 39, 94, 95, 99isumsplit 15186 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘)) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
10192, 100syl5eq 2869 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / e) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
102101oveq2d 7156 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) · (1 / e)) = ((!‘𝑁) · (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
103 fzfid 13336 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0...((𝑁 + 1) − 1)) ∈ Fin)
104 elfznn0 12995 . . . . . . . . . . . 12 (𝑘 ∈ (0...((𝑁 + 1) − 1)) → 𝑘 ∈ ℕ0)
105104adantl 485 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((𝑁 + 1) − 1))) → 𝑘 ∈ ℕ0)
10629, 105, 61sylancr 590 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((𝑁 + 1) − 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
107103, 106fsumcl 15081 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1084, 107, 66adddid 10654 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) · (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
10985, 102, 1083eqtrd 2861 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) / e) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
11082, 109eqtr4d 2860 . . . . . 6 (𝑁 ∈ ℕ → ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) / e))
1114, 66mulcld 10650 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℂ)
11211, 17, 111subaddd 11004 . . . . . 6 (𝑁 ∈ ℕ → ((((!‘𝑁) / e) − (𝑆𝑁)) = ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ↔ ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) / e)))
113110, 112mpbird 260 . . . . 5 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) = ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
114113fveq2d 6656 . . . 4 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (abs‘((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
1154, 66absmuld 14805 . . . 4 (𝑁 ∈ ℕ → (abs‘((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((abs‘(!‘𝑁)) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
1163nnnn0d 11943 . . . . . . 7 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ0)
117116nn0ge0d 11946 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (!‘𝑁))
11868, 117absidd 14773 . . . . 5 (𝑁 ∈ ℕ → (abs‘(!‘𝑁)) = (!‘𝑁))
119118oveq1d 7155 . . . 4 (𝑁 ∈ ℕ → ((abs‘(!‘𝑁)) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
120114, 115, 1193eqtrd 2861 . . 3 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
121 facp1 13634 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
1221, 121syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
123122oveq1d 7155 . . . . . 6 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 1)))
12420nncnd 11641 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
1254, 124, 124mulassd 10653 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 1)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1))))
126123, 125eqtr2d 2858 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1))) = ((!‘(𝑁 + 1)) · (𝑁 + 1)))
127126oveq2d 7156 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1)))) = (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
12821nncnd 11641 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℂ)
12923nncnd 11641 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℂ)
13023nnne0d 11675 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ≠ 0)
1313nnne0d 11675 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ≠ 0)
132128, 129, 4, 130, 131divcan5d 11431 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))))
13354nncnd 11641 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ∈ ℂ)
13454nnne0d 11675 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ≠ 0)
1354, 128, 133, 134divassd 11440 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) = ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
136127, 132, 1353eqtr3d 2865 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) = ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
13772, 120, 1363brtr4d 5074 . 2 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ≤ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))))
138 nnmulcl 11649 . . . . . . 7 ((((𝑁 + 1) + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑁 + 1) + 1) · 𝑁) ∈ ℕ)
13921, 138mpancom 687 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) ∈ ℕ)
140139nnred 11640 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) ∈ ℝ)
141140ltp1d 11559 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) < ((((𝑁 + 1) + 1) · 𝑁) + 1))
142129mulid2d 10648 . . . . 5 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) · (𝑁 + 1))) = ((𝑁 + 1) · (𝑁 + 1)))
14331a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℂ)
14475, 143, 124adddird 10655 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) = ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))))
14575, 124mulcomd 10651 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) = ((𝑁 + 1) · 𝑁))
146124mulid2d 10648 . . . . . . 7 (𝑁 ∈ ℕ → (1 · (𝑁 + 1)) = (𝑁 + 1))
147145, 146oveq12d 7158 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
148124, 143, 75adddird 10655 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) = (((𝑁 + 1) · 𝑁) + (1 · 𝑁)))
149148oveq1d 7155 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) + 1) = ((((𝑁 + 1) · 𝑁) + (1 · 𝑁)) + 1))
15075mulid2d 10648 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 · 𝑁) = 𝑁)
151150oveq2d 7156 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) + (1 · 𝑁)) = (((𝑁 + 1) · 𝑁) + 𝑁))
152151oveq1d 7155 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) · 𝑁) + (1 · 𝑁)) + 1) = ((((𝑁 + 1) · 𝑁) + 𝑁) + 1))
153124, 75mulcld 10650 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) ∈ ℂ)
154153, 75, 143addassd 10652 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) · 𝑁) + 𝑁) + 1) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
155149, 152, 1543eqtrd 2861 . . . . . 6 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) + 1) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
156147, 155eqtr4d 2860 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))) = ((((𝑁 + 1) + 1) · 𝑁) + 1))
157142, 144, 1563eqtrd 2861 . . . 4 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) · (𝑁 + 1))) = ((((𝑁 + 1) + 1) · 𝑁) + 1))
158141, 157breqtrrd 5070 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))))
159 nnre 11632 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
160 nngt0 11656 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
161159, 160jca 515 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
162 1red 10631 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℝ)
163 nnre 11632 . . . . . 6 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ)
164 nngt0 11656 . . . . . 6 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → 0 < ((𝑁 + 1) · (𝑁 + 1)))
165163, 164jca 515 . . . . 5 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))
16623, 165syl 17 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))
167 lt2mul2div 11507 . . . 4 (((((𝑁 + 1) + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) ∧ (1 ∈ ℝ ∧ (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))) → ((((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))) ↔ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁)))
16822, 161, 162, 166, 167syl22anc 837 . . 3 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))) ↔ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁)))
169158, 168mpbid 235 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁))
17019, 24, 25, 137, 169lelttrd 10787 1 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  {cab 2800  wne 3011  wral 3130   class class class wbr 5042  cmpt 5122  dom cdm 5532  1-1-ontowf1o 6333  cfv 6334  (class class class)co 7140  Fincfn 8496  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  seqcseq 13364  cexp 13425  !cfa 13629  chash 13686  abscabs 14584  cli 14832  Σcsu 15033  expce 15406  eceu 15407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-ef 15412  df-e 15413
This theorem is referenced by:  subfacval3  32510
  Copyright terms: Public domain W3C validator