Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclim Structured version   Visualization version   GIF version

Theorem subfaclim 33362
Description: The subfactorial converges rapidly to 𝑁! / e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfaclim (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfaclim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12333 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 14090 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
31, 2syl 17 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
43nncnd 12082 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℂ)
5 ere 15889 . . . . . . 7 e ∈ ℝ
65recni 11082 . . . . . 6 e ∈ ℂ
7 epos 16007 . . . . . . 7 0 < e
85, 7gt0ne0ii 11604 . . . . . 6 e ≠ 0
9 divcl 11732 . . . . . 6 (((!‘𝑁) ∈ ℂ ∧ e ∈ ℂ ∧ e ≠ 0) → ((!‘𝑁) / e) ∈ ℂ)
106, 8, 9mp3an23 1452 . . . . 5 ((!‘𝑁) ∈ ℂ → ((!‘𝑁) / e) ∈ ℂ)
114, 10syl 17 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) / e) ∈ ℂ)
12 derang.d . . . . . . . 8 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
13 subfac.n . . . . . . . 8 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
1412, 13subfacf 33349 . . . . . . 7 𝑆:ℕ0⟶ℕ0
1514ffvelcdmi 7010 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
161, 15syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
1716nn0cnd 12388 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℂ)
1811, 17subcld 11425 . . 3 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
1918abscld 15239 . 2 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ∈ ℝ)
20 peano2nn 12078 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
2120peano2nnd 12083 . . . 4 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
2221nnred 12081 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℝ)
2320, 20nnmulcld 12119 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ)
2422, 23nndivred 12120 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) ∈ ℝ)
25 nnrecre 12108 . 2 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
26 eqid 2736 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))
27 eqid 2736 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (((abs‘-1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘-1)↑𝑛) / (!‘𝑛)))
28 eqid 2736 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((((abs‘-1)↑(𝑁 + 1)) / (!‘(𝑁 + 1))) · ((1 / ((𝑁 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘-1)↑(𝑁 + 1)) / (!‘(𝑁 + 1))) · ((1 / ((𝑁 + 1) + 1))↑𝑛)))
29 neg1cn 12180 . . . . . . 7 -1 ∈ ℂ
3029a1i 11 . . . . . 6 (𝑁 ∈ ℕ → -1 ∈ ℂ)
31 ax-1cn 11022 . . . . . . . . . 10 1 ∈ ℂ
3231absnegi 15203 . . . . . . . . 9 (abs‘-1) = (abs‘1)
33 abs1 15100 . . . . . . . . 9 (abs‘1) = 1
3432, 33eqtri 2764 . . . . . . . 8 (abs‘-1) = 1
35 1le1 11696 . . . . . . . 8 1 ≤ 1
3634, 35eqbrtri 5110 . . . . . . 7 (abs‘-1) ≤ 1
3736a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (abs‘-1) ≤ 1)
3826, 27, 28, 20, 30, 37eftlub 15909 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
3920nnnn0d 12386 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
40 eluznn0 12750 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
4139, 40sylan 580 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
4226eftval 15877 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
4341, 42syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
4443sumeq2dv 15506 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))
4544fveq2d 6823 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
4634oveq1i 7339 . . . . . . . 8 ((abs‘-1)↑(𝑁 + 1)) = (1↑(𝑁 + 1))
4720nnzd 12518 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℤ)
48 1exp 13905 . . . . . . . . 9 ((𝑁 + 1) ∈ ℤ → (1↑(𝑁 + 1)) = 1)
4947, 48syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (1↑(𝑁 + 1)) = 1)
5046, 49eqtrid 2788 . . . . . . 7 (𝑁 ∈ ℕ → ((abs‘-1)↑(𝑁 + 1)) = 1)
5150oveq1d 7344 . . . . . 6 (𝑁 ∈ ℕ → (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (1 · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
52 faccl 14090 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
5339, 52syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) ∈ ℕ)
5453, 20nnmulcld 12119 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ∈ ℕ)
5522, 54nndivred 12120 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℝ)
5655recnd 11096 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℂ)
5756mulid2d 11086 . . . . . 6 (𝑁 ∈ ℕ → (1 · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
5851, 57eqtrd 2776 . . . . 5 (𝑁 ∈ ℕ → (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
5938, 45, 583brtr3d 5120 . . . 4 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
60 eqid 2736 . . . . . . 7 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
61 eftcl 15874 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6229, 61mpan 687 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6341, 62syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6426eftlcvg 15906 . . . . . . . 8 ((-1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → seq(𝑁 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
6529, 39, 64sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → seq(𝑁 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
6660, 47, 43, 63, 65isumcl 15564 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6766abscld 15239 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℝ)
683nnred 12081 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ)
693nngt0d 12115 . . . . 5 (𝑁 ∈ ℕ → 0 < (!‘𝑁))
70 lemul2 11921 . . . . 5 (((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℝ ∧ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 < (!‘𝑁))) → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ↔ ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))))
7167, 55, 68, 69, 70syl112anc 1373 . . . 4 (𝑁 ∈ ℕ → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ↔ ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))))
7259, 71mpbid 231 . . 3 (𝑁 ∈ ℕ → ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
7312, 13subfacval2 33361 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
741, 73syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
75 nncn 12074 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
76 pncan 11320 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
7775, 31, 76sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
7877oveq2d 7345 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0...((𝑁 + 1) − 1)) = (0...𝑁))
7978sumeq1d 15504 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘)))
8079oveq2d 7345 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
8174, 80eqtr4d 2779 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))))
8281oveq1d 7344 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
83 divrec 11742 . . . . . . . . . 10 (((!‘𝑁) ∈ ℂ ∧ e ∈ ℂ ∧ e ≠ 0) → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
846, 8, 83mp3an23 1452 . . . . . . . . 9 ((!‘𝑁) ∈ ℂ → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
854, 84syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
86 df-e 15869 . . . . . . . . . . . 12 e = (exp‘1)
8786oveq2i 7340 . . . . . . . . . . 11 (1 / e) = (1 / (exp‘1))
88 efneg 15898 . . . . . . . . . . . 12 (1 ∈ ℂ → (exp‘-1) = (1 / (exp‘1)))
8931, 88ax-mp 5 . . . . . . . . . . 11 (exp‘-1) = (1 / (exp‘1))
90 efval 15880 . . . . . . . . . . . 12 (-1 ∈ ℂ → (exp‘-1) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘)))
9129, 90ax-mp 5 . . . . . . . . . . 11 (exp‘-1) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘))
9287, 89, 913eqtr2i 2770 . . . . . . . . . 10 (1 / e) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘))
93 nn0uz 12713 . . . . . . . . . . 11 0 = (ℤ‘0)
9442adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
9562adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
96 0nn0 12341 . . . . . . . . . . . . 13 0 ∈ ℕ0
9726eftlcvg 15906 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ 0 ∈ ℕ0) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
9829, 96, 97mp2an 689 . . . . . . . . . . . 12 seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝
9998a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
10093, 60, 39, 94, 95, 99isumsplit 15643 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘)) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
10192, 100eqtrid 2788 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / e) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
102101oveq2d 7345 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) · (1 / e)) = ((!‘𝑁) · (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
103 fzfid 13786 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0...((𝑁 + 1) − 1)) ∈ Fin)
104 elfznn0 13442 . . . . . . . . . . . 12 (𝑘 ∈ (0...((𝑁 + 1) − 1)) → 𝑘 ∈ ℕ0)
105104adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((𝑁 + 1) − 1))) → 𝑘 ∈ ℕ0)
10629, 105, 61sylancr 587 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((𝑁 + 1) − 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
107103, 106fsumcl 15536 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1084, 107, 66adddid 11092 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) · (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
10985, 102, 1083eqtrd 2780 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) / e) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
11082, 109eqtr4d 2779 . . . . . 6 (𝑁 ∈ ℕ → ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) / e))
1114, 66mulcld 11088 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℂ)
11211, 17, 111subaddd 11443 . . . . . 6 (𝑁 ∈ ℕ → ((((!‘𝑁) / e) − (𝑆𝑁)) = ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ↔ ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) / e)))
113110, 112mpbird 256 . . . . 5 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) = ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
114113fveq2d 6823 . . . 4 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (abs‘((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
1154, 66absmuld 15257 . . . 4 (𝑁 ∈ ℕ → (abs‘((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((abs‘(!‘𝑁)) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
1163nnnn0d 12386 . . . . . . 7 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ0)
117116nn0ge0d 12389 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (!‘𝑁))
11868, 117absidd 15225 . . . . 5 (𝑁 ∈ ℕ → (abs‘(!‘𝑁)) = (!‘𝑁))
119118oveq1d 7344 . . . 4 (𝑁 ∈ ℕ → ((abs‘(!‘𝑁)) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
120114, 115, 1193eqtrd 2780 . . 3 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
121 facp1 14085 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
1221, 121syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
123122oveq1d 7344 . . . . . 6 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 1)))
12420nncnd 12082 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
1254, 124, 124mulassd 11091 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 1)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1))))
126123, 125eqtr2d 2777 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1))) = ((!‘(𝑁 + 1)) · (𝑁 + 1)))
127126oveq2d 7345 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1)))) = (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
12821nncnd 12082 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℂ)
12923nncnd 12082 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℂ)
13023nnne0d 12116 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ≠ 0)
1313nnne0d 12116 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ≠ 0)
132128, 129, 4, 130, 131divcan5d 11870 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))))
13354nncnd 12082 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ∈ ℂ)
13454nnne0d 12116 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ≠ 0)
1354, 128, 133, 134divassd 11879 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) = ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
136127, 132, 1353eqtr3d 2784 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) = ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
13772, 120, 1363brtr4d 5121 . 2 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ≤ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))))
138 nnmulcl 12090 . . . . . . 7 ((((𝑁 + 1) + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑁 + 1) + 1) · 𝑁) ∈ ℕ)
13921, 138mpancom 685 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) ∈ ℕ)
140139nnred 12081 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) ∈ ℝ)
141140ltp1d 11998 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) < ((((𝑁 + 1) + 1) · 𝑁) + 1))
142129mulid2d 11086 . . . . 5 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) · (𝑁 + 1))) = ((𝑁 + 1) · (𝑁 + 1)))
14331a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℂ)
14475, 143, 124adddird 11093 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) = ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))))
14575, 124mulcomd 11089 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) = ((𝑁 + 1) · 𝑁))
146124mulid2d 11086 . . . . . . 7 (𝑁 ∈ ℕ → (1 · (𝑁 + 1)) = (𝑁 + 1))
147145, 146oveq12d 7347 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
148124, 143, 75adddird 11093 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) = (((𝑁 + 1) · 𝑁) + (1 · 𝑁)))
149148oveq1d 7344 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) + 1) = ((((𝑁 + 1) · 𝑁) + (1 · 𝑁)) + 1))
15075mulid2d 11086 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 · 𝑁) = 𝑁)
151150oveq2d 7345 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) + (1 · 𝑁)) = (((𝑁 + 1) · 𝑁) + 𝑁))
152151oveq1d 7344 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) · 𝑁) + (1 · 𝑁)) + 1) = ((((𝑁 + 1) · 𝑁) + 𝑁) + 1))
153124, 75mulcld 11088 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) ∈ ℂ)
154153, 75, 143addassd 11090 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) · 𝑁) + 𝑁) + 1) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
155149, 152, 1543eqtrd 2780 . . . . . 6 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) + 1) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
156147, 155eqtr4d 2779 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))) = ((((𝑁 + 1) + 1) · 𝑁) + 1))
157142, 144, 1563eqtrd 2780 . . . 4 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) · (𝑁 + 1))) = ((((𝑁 + 1) + 1) · 𝑁) + 1))
158141, 157breqtrrd 5117 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))))
159 nnre 12073 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
160 nngt0 12097 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
161159, 160jca 512 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
162 1red 11069 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℝ)
163 nnre 12073 . . . . . 6 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ)
164 nngt0 12097 . . . . . 6 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → 0 < ((𝑁 + 1) · (𝑁 + 1)))
165163, 164jca 512 . . . . 5 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))
16623, 165syl 17 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))
167 lt2mul2div 11946 . . . 4 (((((𝑁 + 1) + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) ∧ (1 ∈ ℝ ∧ (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))) → ((((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))) ↔ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁)))
16822, 161, 162, 166, 167syl22anc 836 . . 3 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))) ↔ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁)))
169158, 168mpbid 231 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁))
17019, 24, 25, 137, 169lelttrd 11226 1 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  {cab 2713  wne 2940  wral 3061   class class class wbr 5089  cmpt 5172  dom cdm 5614  1-1-ontowf1o 6472  cfv 6473  (class class class)co 7329  Fincfn 8796  cc 10962  cr 10963  0cc0 10964  1c1 10965   + caddc 10967   · cmul 10969   < clt 11102  cle 11103  cmin 11298  -cneg 11299   / cdiv 11725  cn 12066  0cn0 12326  cz 12412  cuz 12675  ...cfz 13332  seqcseq 13814  cexp 13875  !cfa 14080  chash 14137  abscabs 15036  cli 15284  Σcsu 15488  expce 15862  eceu 15863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-oadd 8363  df-er 8561  df-map 8680  df-pm 8681  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-sup 9291  df-inf 9292  df-oi 9359  df-dju 9750  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-n0 12327  df-xnn0 12399  df-z 12413  df-uz 12676  df-q 12782  df-rp 12824  df-ico 13178  df-fz 13333  df-fzo 13476  df-fl 13605  df-seq 13815  df-exp 13876  df-fac 14081  df-bc 14110  df-hash 14138  df-shft 14869  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-limsup 15271  df-clim 15288  df-rlim 15289  df-sum 15489  df-ef 15868  df-e 15869
This theorem is referenced by:  subfacval3  33363
  Copyright terms: Public domain W3C validator