Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclim Structured version   Visualization version   GIF version

Theorem subfaclim 35215
Description: The subfactorial converges rapidly to 𝑁! / e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
Assertion
Ref Expression
subfaclim (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝑁   𝐷,𝑛   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)

Proof of Theorem subfaclim
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 12513 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 14306 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
31, 2syl 17 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ)
43nncnd 12261 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℂ)
5 ere 16110 . . . . . . 7 e ∈ ℝ
65recni 11254 . . . . . 6 e ∈ ℂ
7 epos 16230 . . . . . . 7 0 < e
85, 7gt0ne0ii 11778 . . . . . 6 e ≠ 0
9 divcl 11907 . . . . . 6 (((!‘𝑁) ∈ ℂ ∧ e ∈ ℂ ∧ e ≠ 0) → ((!‘𝑁) / e) ∈ ℂ)
106, 8, 9mp3an23 1455 . . . . 5 ((!‘𝑁) ∈ ℂ → ((!‘𝑁) / e) ∈ ℂ)
114, 10syl 17 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) / e) ∈ ℂ)
12 derang.d . . . . . . . 8 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
13 subfac.n . . . . . . . 8 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
1412, 13subfacf 35202 . . . . . . 7 𝑆:ℕ0⟶ℕ0
1514ffvelcdmi 7078 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑆𝑁) ∈ ℕ0)
161, 15syl 17 . . . . 5 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℕ0)
1716nn0cnd 12569 . . . 4 (𝑁 ∈ ℕ → (𝑆𝑁) ∈ ℂ)
1811, 17subcld 11599 . . 3 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) ∈ ℂ)
1918abscld 15460 . 2 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ∈ ℝ)
20 peano2nn 12257 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
2120peano2nnd 12262 . . . 4 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℕ)
2221nnred 12260 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℝ)
2320, 20nnmulcld 12298 . . 3 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ)
2422, 23nndivred 12299 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) ∈ ℝ)
25 nnrecre 12287 . 2 (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
26 eqid 2736 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))
27 eqid 2736 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (((abs‘-1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘-1)↑𝑛) / (!‘𝑛)))
28 eqid 2736 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((((abs‘-1)↑(𝑁 + 1)) / (!‘(𝑁 + 1))) · ((1 / ((𝑁 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘-1)↑(𝑁 + 1)) / (!‘(𝑁 + 1))) · ((1 / ((𝑁 + 1) + 1))↑𝑛)))
29 neg1cn 12359 . . . . . . 7 -1 ∈ ℂ
3029a1i 11 . . . . . 6 (𝑁 ∈ ℕ → -1 ∈ ℂ)
31 ax-1cn 11192 . . . . . . . . . 10 1 ∈ ℂ
3231absnegi 15424 . . . . . . . . 9 (abs‘-1) = (abs‘1)
33 abs1 15321 . . . . . . . . 9 (abs‘1) = 1
3432, 33eqtri 2759 . . . . . . . 8 (abs‘-1) = 1
35 1le1 11870 . . . . . . . 8 1 ≤ 1
3634, 35eqbrtri 5145 . . . . . . 7 (abs‘-1) ≤ 1
3736a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (abs‘-1) ≤ 1)
3826, 27, 28, 20, 30, 37eftlub 16132 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘)) ≤ (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
3920nnnn0d 12567 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
40 eluznn0 12938 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
4139, 40sylan 580 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
4226eftval 16097 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
4341, 42syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
4443sumeq2dv 15723 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))
4544fveq2d 6885 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
4634oveq1i 7420 . . . . . . . 8 ((abs‘-1)↑(𝑁 + 1)) = (1↑(𝑁 + 1))
4720nnzd 12620 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℤ)
48 1exp 14114 . . . . . . . . 9 ((𝑁 + 1) ∈ ℤ → (1↑(𝑁 + 1)) = 1)
4947, 48syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (1↑(𝑁 + 1)) = 1)
5046, 49eqtrid 2783 . . . . . . 7 (𝑁 ∈ ℕ → ((abs‘-1)↑(𝑁 + 1)) = 1)
5150oveq1d 7425 . . . . . 6 (𝑁 ∈ ℕ → (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (1 · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
52 faccl 14306 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ0 → (!‘(𝑁 + 1)) ∈ ℕ)
5339, 52syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) ∈ ℕ)
5453, 20nnmulcld 12298 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ∈ ℕ)
5522, 54nndivred 12299 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℝ)
5655recnd 11268 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℂ)
5756mullidd 11258 . . . . . 6 (𝑁 ∈ ℕ → (1 · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
5851, 57eqtrd 2771 . . . . 5 (𝑁 ∈ ℕ → (((abs‘-1)↑(𝑁 + 1)) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
5938, 45, 583brtr3d 5155 . . . 4 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
60 eqid 2736 . . . . . . 7 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
61 eftcl 16094 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6229, 61mpan 690 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6341, 62syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6426eftlcvg 16129 . . . . . . . 8 ((-1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → seq(𝑁 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
6529, 39, 64sylancr 587 . . . . . . 7 (𝑁 ∈ ℕ → seq(𝑁 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
6660, 47, 43, 63, 65isumcl 15782 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
6766abscld 15460 . . . . 5 (𝑁 ∈ ℕ → (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℝ)
683nnred 12260 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ)
693nngt0d 12294 . . . . 5 (𝑁 ∈ ℕ → 0 < (!‘𝑁))
70 lemul2 12099 . . . . 5 (((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℝ ∧ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ∈ ℝ ∧ ((!‘𝑁) ∈ ℝ ∧ 0 < (!‘𝑁))) → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ↔ ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))))
7167, 55, 68, 69, 70syl112anc 1376 . . . 4 (𝑁 ∈ ℕ → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ≤ (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) ↔ ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))))
7259, 71mpbid 232 . . 3 (𝑁 ∈ ℕ → ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) ≤ ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
7312, 13subfacval2 35214 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
741, 73syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
75 nncn 12253 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
76 pncan 11493 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
7775, 31, 76sylancl 586 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
7877oveq2d 7426 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (0...((𝑁 + 1) − 1)) = (0...𝑁))
7978sumeq1d 15721 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘)))
8079oveq2d 7426 . . . . . . . . 9 (𝑁 ∈ ℕ → ((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘))))
8174, 80eqtr4d 2774 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑆𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))))
8281oveq1d 7425 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
83 divrec 11917 . . . . . . . . . 10 (((!‘𝑁) ∈ ℂ ∧ e ∈ ℂ ∧ e ≠ 0) → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
846, 8, 83mp3an23 1455 . . . . . . . . 9 ((!‘𝑁) ∈ ℂ → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
854, 84syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) / e) = ((!‘𝑁) · (1 / e)))
86 df-e 16089 . . . . . . . . . . . 12 e = (exp‘1)
8786oveq2i 7421 . . . . . . . . . . 11 (1 / e) = (1 / (exp‘1))
88 efneg 16121 . . . . . . . . . . . 12 (1 ∈ ℂ → (exp‘-1) = (1 / (exp‘1)))
8931, 88ax-mp 5 . . . . . . . . . . 11 (exp‘-1) = (1 / (exp‘1))
90 efval 16100 . . . . . . . . . . . 12 (-1 ∈ ℂ → (exp‘-1) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘)))
9129, 90ax-mp 5 . . . . . . . . . . 11 (exp‘-1) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘))
9287, 89, 913eqtr2i 2765 . . . . . . . . . 10 (1 / e) = Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘))
93 nn0uz 12899 . . . . . . . . . . 11 0 = (ℤ‘0)
9442adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))‘𝑘) = ((-1↑𝑘) / (!‘𝑘)))
9562adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
96 0nn0 12521 . . . . . . . . . . . . 13 0 ∈ ℕ0
9726eftlcvg 16129 . . . . . . . . . . . . 13 ((-1 ∈ ℂ ∧ 0 ∈ ℕ0) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
9829, 96, 97mp2an 692 . . . . . . . . . . . 12 seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝
9998a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
10093, 60, 39, 94, 95, 99isumsplit 15861 . . . . . . . . . 10 (𝑁 ∈ ℕ → Σ𝑘 ∈ ℕ0 ((-1↑𝑘) / (!‘𝑘)) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
10192, 100eqtrid 2783 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 / e) = (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
102101oveq2d 7426 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) · (1 / e)) = ((!‘𝑁) · (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
103 fzfid 13996 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0...((𝑁 + 1) − 1)) ∈ Fin)
104 elfznn0 13642 . . . . . . . . . . . 12 (𝑘 ∈ (0...((𝑁 + 1) − 1)) → 𝑘 ∈ ℕ0)
105104adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((𝑁 + 1) − 1))) → 𝑘 ∈ ℕ0)
10629, 105, 61sylancr 587 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...((𝑁 + 1) − 1))) → ((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
107103, 106fsumcl 15754 . . . . . . . . 9 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) ∈ ℂ)
1084, 107, 66adddid 11264 . . . . . . . 8 (𝑁 ∈ ℕ → ((!‘𝑁) · (Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘)) + Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
10985, 102, 1083eqtrd 2775 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) / e) = (((!‘𝑁) · Σ𝑘 ∈ (0...((𝑁 + 1) − 1))((-1↑𝑘) / (!‘𝑘))) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
11082, 109eqtr4d 2774 . . . . . 6 (𝑁 ∈ ℕ → ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) / e))
1114, 66mulcld 11260 . . . . . . 7 (𝑁 ∈ ℕ → ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ∈ ℂ)
11211, 17, 111subaddd 11617 . . . . . 6 (𝑁 ∈ ℕ → ((((!‘𝑁) / e) − (𝑆𝑁)) = ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))) ↔ ((𝑆𝑁) + ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) / e)))
113110, 112mpbird 257 . . . . 5 (𝑁 ∈ ℕ → (((!‘𝑁) / e) − (𝑆𝑁)) = ((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘))))
114113fveq2d 6885 . . . 4 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = (abs‘((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
1154, 66absmuld 15478 . . . 4 (𝑁 ∈ ℕ → (abs‘((!‘𝑁) · Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((abs‘(!‘𝑁)) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
1163nnnn0d 12567 . . . . . . 7 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℕ0)
117116nn0ge0d 12570 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (!‘𝑁))
11868, 117absidd 15446 . . . . 5 (𝑁 ∈ ℕ → (abs‘(!‘𝑁)) = (!‘𝑁))
119118oveq1d 7425 . . . 4 (𝑁 ∈ ℕ → ((abs‘(!‘𝑁)) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
120114, 115, 1193eqtrd 2775 . . 3 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) = ((!‘𝑁) · (abs‘Σ𝑘 ∈ (ℤ‘(𝑁 + 1))((-1↑𝑘) / (!‘𝑘)))))
121 facp1 14301 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
1221, 121syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
123122oveq1d 7425 . . . . . 6 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) = (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 1)))
12420nncnd 12261 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℂ)
1254, 124, 124mulassd 11263 . . . . . 6 (𝑁 ∈ ℕ → (((!‘𝑁) · (𝑁 + 1)) · (𝑁 + 1)) = ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1))))
126123, 125eqtr2d 2772 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1))) = ((!‘(𝑁 + 1)) · (𝑁 + 1)))
127126oveq2d 7426 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1)))) = (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘(𝑁 + 1)) · (𝑁 + 1))))
12821nncnd 12261 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) ∈ ℂ)
12923nncnd 12261 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℂ)
13023nnne0d 12295 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ≠ 0)
1313nnne0d 12295 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) ≠ 0)
132128, 129, 4, 130, 131divcan5d 12048 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘𝑁) · ((𝑁 + 1) · (𝑁 + 1)))) = (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))))
13354nncnd 12261 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ∈ ℂ)
13454nnne0d 12295 . . . . 5 (𝑁 ∈ ℕ → ((!‘(𝑁 + 1)) · (𝑁 + 1)) ≠ 0)
1354, 128, 133, 134divassd 12057 . . . 4 (𝑁 ∈ ℕ → (((!‘𝑁) · ((𝑁 + 1) + 1)) / ((!‘(𝑁 + 1)) · (𝑁 + 1))) = ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
136127, 132, 1353eqtr3d 2779 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) = ((!‘𝑁) · (((𝑁 + 1) + 1) / ((!‘(𝑁 + 1)) · (𝑁 + 1)))))
13772, 120, 1363brtr4d 5156 . 2 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) ≤ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))))
138 nnmulcl 12269 . . . . . . 7 ((((𝑁 + 1) + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑁 + 1) + 1) · 𝑁) ∈ ℕ)
13921, 138mpancom 688 . . . . . 6 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) ∈ ℕ)
140139nnred 12260 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) ∈ ℝ)
141140ltp1d 12177 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) < ((((𝑁 + 1) + 1) · 𝑁) + 1))
142129mullidd 11258 . . . . 5 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) · (𝑁 + 1))) = ((𝑁 + 1) · (𝑁 + 1)))
14331a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℂ)
14475, 143, 124adddird 11265 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) = ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))))
14575, 124mulcomd 11261 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 · (𝑁 + 1)) = ((𝑁 + 1) · 𝑁))
146124mullidd 11258 . . . . . . 7 (𝑁 ∈ ℕ → (1 · (𝑁 + 1)) = (𝑁 + 1))
147145, 146oveq12d 7428 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
148124, 143, 75adddird 11265 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) = (((𝑁 + 1) · 𝑁) + (1 · 𝑁)))
149148oveq1d 7425 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) + 1) = ((((𝑁 + 1) · 𝑁) + (1 · 𝑁)) + 1))
15075mullidd 11258 . . . . . . . . 9 (𝑁 ∈ ℕ → (1 · 𝑁) = 𝑁)
151150oveq2d 7426 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) + (1 · 𝑁)) = (((𝑁 + 1) · 𝑁) + 𝑁))
152151oveq1d 7425 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) · 𝑁) + (1 · 𝑁)) + 1) = ((((𝑁 + 1) · 𝑁) + 𝑁) + 1))
153124, 75mulcld 11260 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) ∈ ℂ)
154153, 75, 143addassd 11262 . . . . . . 7 (𝑁 ∈ ℕ → ((((𝑁 + 1) · 𝑁) + 𝑁) + 1) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
155149, 152, 1543eqtrd 2775 . . . . . 6 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) + 1) = (((𝑁 + 1) · 𝑁) + (𝑁 + 1)))
156147, 155eqtr4d 2774 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 · (𝑁 + 1)) + (1 · (𝑁 + 1))) = ((((𝑁 + 1) + 1) · 𝑁) + 1))
157142, 144, 1563eqtrd 2775 . . . 4 (𝑁 ∈ ℕ → (1 · ((𝑁 + 1) · (𝑁 + 1))) = ((((𝑁 + 1) + 1) · 𝑁) + 1))
158141, 157breqtrrd 5152 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))))
159 nnre 12252 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
160 nngt0 12276 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
161159, 160jca 511 . . . 4 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
162 1red 11241 . . . 4 (𝑁 ∈ ℕ → 1 ∈ ℝ)
163 nnre 12252 . . . . . 6 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → ((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ)
164 nngt0 12276 . . . . . 6 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → 0 < ((𝑁 + 1) · (𝑁 + 1)))
165163, 164jca 511 . . . . 5 (((𝑁 + 1) · (𝑁 + 1)) ∈ ℕ → (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))
16623, 165syl 17 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))
167 lt2mul2div 12125 . . . 4 (((((𝑁 + 1) + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) ∧ (1 ∈ ℝ ∧ (((𝑁 + 1) · (𝑁 + 1)) ∈ ℝ ∧ 0 < ((𝑁 + 1) · (𝑁 + 1))))) → ((((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))) ↔ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁)))
16822, 161, 162, 166, 167syl22anc 838 . . 3 (𝑁 ∈ ℕ → ((((𝑁 + 1) + 1) · 𝑁) < (1 · ((𝑁 + 1) · (𝑁 + 1))) ↔ (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁)))
169158, 168mpbid 232 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) + 1) / ((𝑁 + 1) · (𝑁 + 1))) < (1 / 𝑁))
17019, 24, 25, 137, 169lelttrd 11398 1 (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆𝑁))) < (1 / 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wne 2933  wral 3052   class class class wbr 5124  cmpt 5206  dom cdm 5659  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529  seqcseq 14024  cexp 14084  !cfa 14296  chash 14353  abscabs 15258  cli 15505  Σcsu 15707  expce 16082  eceu 16083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-ico 13373  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-e 16089
This theorem is referenced by:  subfacval3  35216
  Copyright terms: Public domain W3C validator